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ABSTRACT

Adapting the parameters of a statistical speatdependent continuous-speech recog-
nizer to the spea&k and the channel can significantly imggahe recognition performance
and rolustness of the system. In continuous mixture-density hiddenaviarkdels the
number of component densities is typicalgrywlage, and it may not be feasible to
acquire a stiicient amount of adaptation data for usb maximume-lilkelihood estimates.
To sole this problem, we & recently proposed a constrained estimation technique for
Gaussian mixture densitieso improve the behaor of our adaptation scheme fordar
amounts of adaptation data, we combine it here with Bayesian technicriesl\éte

our algorithms on the lge-vocalulary Wall Street Journal corpus for nonwatispeakrs

of American English. The recognition error rate is approximatelyedatith only a small
amount of adaptation data, and it approaches the spi@dkependent accura@chiered

for natve speaérs.



1 INTRODUCTION

Automatic speech recognition performancgrdéeles rapidly when there is a mismatch
between the testing and the training conditions, under which the recognizer parameters
were estimated. It may notwedys be feasible to kia consistent conditions in the testing
and training phasesoFexample, in lage-vocalulary dictation applications the speak
independent performancegtades dramatically for outlier speak, such as nonnegi
spealers of the recognizer language. Since modegelancalulary speech recognizers

have millions of free parameters, it is not practical to colleggdamounts of speak
dependent data and retrain the recognizer models. Simitagdylesirable towaid the

expense of collecting additional data when the recognizer is going to be used on speech
transmitted through a digrent channel than the one used in training. Such problems may
be soled by adapting the recognizer models, using much smaller amounts of adaptation
data than those used in gentional training techniques. In this paper we focus on adapt-
ing the models to the speakalthough the techniques we describe can also be used at

other levels [1].

One Bimily of adaptation approaches attempts to match thespeakr’s obserations to

the speakr-independent training data by transforming the speakr’s feature space

[2][3][4]. The transformation approach has theatage of simplicityln addition, if the
number of free parameters is small, then transformation techniques adapt to the user with
only a small amount of adaptation speech (quick adaptation). A disiade of transfor-
mation methods is that thare usually te&-dependent, that is, thewepealkr must

record sentences with the same tecorded pngously by some reference speak

Moreover, transformation methods may notedkll adwantage of lage amounts of adap-

tation data.

A second &amily of adaptation algorithms folles a Bayesian approach, where the
spealer-independent information is encapsulated in the prior digtabs [5][6]. The
Bayesian approach isxteindependent, and has the nice property that spealaptve
performance will coverge to speair-dependent performance as the amount of adaptation
speech increases. Wever, the adaptation rate is usuallywslo
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In this paper we present adaptation schemes that combine the quick adaptation character-
istics of transformation-based methods with the nice asymptotic properties of Bayesian
methods. W first present a transformation-based method for continuous mixture-density
hidden Marlkv models (HMMs) that as introduced in [7]. Adaptation is acheel via a
transformation of the speakindependent obseation densities, and the transformation
parameters are obtained using the maximumliibod (ML) criterion. The number of
transformation parameters can be adjusted based owaitebée amount of adaptation

data for quick adaptation. &then sha how this algorithm can be combined with Baye-

sian techniques. The combined method adapts tov&pealkr with small amounts of
adaptation data and &k better achntage of lage amounts of adaptation data than the

transformation method.

2 TRANSFORMATION-BASED ADAPTATION

Transformation-based approaches to speaklaptation are typicallyxedependent, that
is they require the n& speakr to record some utterances with predetermindd These
utterances are aligned to ones recorded by referencesspeakd mappings between the
new-spealer and the reference-spealacoustic spaces are obtained usiggession tech-
niques [3][4][8].

In [7] we presented a mel transformation-based approach to speakliaptation for con-
tinuous mixture-density HMMs.dleliminate mismatched training and testing conditions,
transformations can be applied either directly to the features, or to the speech models [9].
We chose to apply the transformation at the distidln level, rather than transforming the
feature ectors directlysince we can then use the Expectation-Maximization (EM) algo-
rithm [10] to estimate the transformation parameters by maximizing #léblod of the
adaptation data (see Figura). One adantage of this approach is that the need for time
alignment between meand reference speakdata is eliminated, and the transformation
parameters can be estimated using-spealer data alone. The estimation of the transfor-

mation can also be vied as a constrained estimation of Gaussian mixtures.



For continuous mixture-density HMMs with adg number of component mixtures, it is
impractical to assume that enough adaptation datavallatzle for independent reestima-

tion of all the component densities. The constrained estimation we presentedvier{7] o
comes this problem by applying the same transformation to all components of a particular
mixture (or a group of mixtures, if there is tying of transformations). Gaussians for which
there were no obseations in the training data are adapted based on data that were most

likely generated by other Gaussians of the same or other neighboring mixtures.

To see hw this method can be applied for adaptation, we assume that thespeak

pendent (SI) HMM for the Slactor procesgy,] has obsemtion densities of the form

Ps(Yels) = 5 Pl [SON(Ys Hig Zig) (1)

wherepg (Y; | S;) Is the obsemtion density of the HMM statg, p(w, | ;) is the proba-
bility of the i-th mixture component of stagg, N(y;; Wig, Z;4) is the multvariate Gauss-
ian density with meap;, and coariance matrix;,, and g is the indeof the Gaussian

codebook used by stade

Adaptation of this system can be acfei@ by jointly transforming all the Gaussians of
each mixture. Specificallyve assume that,\@n the HMM states, , the speadr-depen-
dent \ector procesg x;] can be obtained by an underlying procggd through the
transformation

X = Agyp t+ bg . 2)

and that the underlying procegg,] was generated using the SI model of equation (1).

Under this assumption, the speakdapted (SA) obseation densities will ha the form

Psa(X ) = P [ S)N(xiAghig + by, AgZigAg) ®3)

and only the parameterg, by, g = 1, ..., N need to be estimated during adaptation,
whereN is the number of distinct transformations. The same transformations can be

applied to diferentHMM states, and this tying of transformations can be used to optimize



performance based on the amount\ailable adaptation data. The transformation param-
eters can be estimated using the EM algorithm. The reestimation formulae for the transfor-

mation parameters are dexd in [7] and are summarized b&lo



1. Initialize all transformations withA,(0) = I, by(0) = 0,9 = 1,...,N . Setk=0.

2. E-step: Perform one iteration of the foasd-backvard algorithm on the speech data,
using Gaussians transformed with the currahter of the transformations

Ay(K), by(k) . For all component Gaussians and all mixtigesollect the suffcient
statistics

iy = 2= 3 Vi(S)B(3)%
1915,
Sig = ﬁli;t’zs[vt(st)cnt(stxxt—nigxxt—nigf @

Nig = Y(S)9u(s)
ts

wherey,(s,) is the probability of being at stageat timet given the current HMM
parameters, the summation igoall times and HMM states that share the same nfix-

ture components, ang(s;) is the posterior probability

@i(s) = ployg | Ag(K), by(k), X ) (5)
3. M-step: Compute the ne transformation parameters. Under the assumption of ¢liag-

onal cavariance and transformation matrices, the elemeatslb of

Ay(k+1), by(k+1) can be obtained by solving the fallmg equations for ead

= _ 2. 2
O n O O nu.l] O nppO0 0O n.p.l] O ﬂ.+6’D
2 i 1.2 i T i i ig_
D E D T D T D e S0 Yo i M e e
I I 0; O I 0; U o, U o1 oo [ o; U
(6)
ooy My 5 1
2 2 2
Y ro,"U 0T 0,0

where for simplicity we hae dropped the dependencegithe \ariablesy;, oiz, Hi, 6i2

are elements of thesetors and diagonal matricgg, g, Hig, Zig, respectiely.

4. If the corvergence criterion is not met, go to step 2.




Once the transformation parameters are determined, the constrained ML estimates for the

means and covariances can be obtained using

CML

Hig = Ag Hig* by @
cML T
Zig = AgZighy

3 COMBINING TRANSFORMATION AND BAYESIAN-
BASED ADAPTATION

In Bayesian adaptation techniques the limited amount of adaptation data is optimally com-
bined with the prior kneledge. Wth the appropriate choice of the prior disttions, the
maximuma posteriori (MAP) estimates for the means andaeances of HMMs with
single-Gaussian obsextion densities can be obtained using linear combinations of the
spealker-dependent counts and some quantities that depend on the parameters of the prior
distributions [5]. V& use the terroounts above to denote the diidient statistics collected

by performing one iteration of the foand-backvard algorithm on the adaptation data.

MAP estimates for the parameters of continuous mixture-density HMMs can be obtained
in the same @y, as shan in [6]. For example, the MAP estimate for the mean ofithe
Gaussian in the HMM mixture density of thgn Gaussian codeboaan be obtained

using [6]

MAP

TigMyg + th(st)cp.t(st)xt
Uig = 2

Tig+ th(st)cp.t(st)
S

(8)

wherey,(s;) is the probability of being at stadeat timet given the current HMM param-

eters, andp,(s;) is the posterior probability of théh mixture component

P(wig | SYUN(X;; Hig: Zig)
Z p((*)]g I St)N(Xt! ujgi ng)
J

0(s) = p(wig | %, ) = 9)

The quantities;,, m;, are parameters of the joint prior density of the mixture parameters,
which was chosen in [6] as a product of the Dirichlet and normahk¥#vt densities. The

parameter;, is usually estimated empirically and can be used to control the adaptation
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rate. Similar estimation formulae can be used for thar@@nces of the Gaussians. Based
on (8) and the similar formulae for the second-order statistics, an approximate MAP
(AMAP) estimation scheme can be implemented by linearly combining theesjiedd-

pendent and the spesddependent counts (see Figlt® for each component density

Oy = A Oy + (1) Gy

D(xT[ﬁZMAP =\ D(xTEf@'J +(1-)) D()(T[ng ' (10)

ngMAP = )\n% + (1—)\)n%D
where the superscripts on the right-hand side denote thewdatatuch the follaving sta-

tistics (counts) are collected during one iteration of thedodvbackvard algorithm

(kG = Zyt(st)(plt(st)xt
Ls
G Ho = 3 Vi(S)@u(S)% X a1
Ls
Nig = > Yi(S)@i(s)
Ls

The weightA controls the adaptation rate. Using the combined counts, we can compute
the AMAP estimates of the means anglar@ances of each Gaussian component density

from

MAP
AMAP _ D@Z
ig T _AMAP
ig
T_AMAP
SAMAP _ [XX [:]Ag B AMAP( AMAP)T
ig - AMAP Hig Hig
ig

(12)

Similar adaptation schemesvieaalso appeared for discrete HMMs [11], and can be used

to adapt the mixture weights in the approximate Bayesian scheme described here.

In Bayesian adaptation schemes, only the Gaussians of thespekgpendent models
that are most lig&ly to have generated some of the adaptation data will be adapted to the

spealer. These Gaussians may represent only a small fraction of the total number in con-



tinuous HMMs with a lage number of Gaussians. On the other hand, as the amount of
adaptation data increases, the spedkpendent statistics will dominate the spakde-
pendent priors and Bayesian techniques will approach speegendent performance.

We should, therefore, aim for an adaptation scheme that retains the nice properties of
Bayesian schemes for ¢gr amounts of adaptation data, and has ivgatperformance

for small amounts of adaptation datae \0an achiee this by using our transformation-
based adaptation as a preprocessing step to transform therspdagendent models so
that the better match the mespealkr characteristics and impp®the prior information in
MAP estimation schemesoTombine the transformation and the approximate Bayesian
methods, we can first transform the smeakdependent counts using the transformation

parameters estimated with the constrained ML method described in Section 2,

D([EQML = Ay D([fgl + by
(13)

BTy = Ay T g A + A, TKC by + by X Tig Ay + i bybg

The transformed counts can then be combined with the epadeBendent counts col-

lected using the adaptation data

™ = AT+ (1-A) Xy

T = A BT + (1=A) T (14)
COM CML SD
nig :)\nig +(1—}\)nig
and the combined-method models can be estimated from these counts using
com _ &E%OM
'g —  com
N (15)

T _COM
com _ [XX ng COM, COM
ig - COM _uig (“ig )
ig

T

>

This procedure is sl schematically in Figurgc.



4 EXPERIMENTAL RESULTS

We evaluated our adaptation algorithms on the $p®kask of the phase-1, garwocahu-

lary Wall Street Journal (WSJ) corpus [12][13], trying to imy@oecognition perfor-

mance for nonnate spea&rs of American English. Each test set used in this section
consists of ten nonnaé speakrs of American English whose first languages are broadly
distributed across the major languages. Experiments were carried out usiadpERI-
PHER™ speech recognition system configured with a six-feature front end that outputs
12 cepstral coéitients, cepstral engy, and their first- and second-orderfeliences. The
cepstral features are computed fronast fourier transform (FFT) filterbank, and subse-
guent cepstral-mean normalization on a sentence basis is performadedgenonic hid-
den Marlov models with an arbitrary deee of Gaussian sharing acros$edént HMM

states as described in [11]. The spakdependent continuous HMM systems that we
used as seed models for adaptation were gategendent, trained on 140 speiakand
17,000 sentences for each genéach of the tw systems had 12,000 coxitelependent
phonetic models that shared 500 Gaussian codebooks with 32 Gaussian components per
codebook. Br fast eperimentation, we used the progreessearch franveork [15]: an

initial, spealker-independent recognizer with a bigram language model outputslat-

tices for all the utterances in the test set. Thewe Vattices are then rescored using
spealer-adapted models. ®\Wsed the baseline 5,00@#, closed-wcalulary' bigram

and trigram language models pided by the MIT Lincoln Laboratorylhe trigram lan-
guage model as implemented using the N-best rescoring paradigm [16], by rescoring the

list of the N-best sentencgpotheses generated using the bigram language model.

In the first series obperiments we used the bigram language modelfiist evaluated

the performance of the transformation-based adaptatiorafmug numbers of transfor-
mations and amounts of adaptation data. As we can see in Ejgunere we hze plotted

the word error rate as a function of the number of adaptation sentences, multiple transfor-

mations outperformery constrained schemes that use 1 or 2 transformations. The perfor-

1. A closed-ecalulary language model is intended for recognizing speech that does not include
words outside of theocalulary.

10



mance with 20 and 40 transformations is simaaud is better than the less constrained

case of 160 transformations. Wever, as the amount of adaptation data increases, the 160
transformations takadwantage of the additional data and outperform the more constrained
schemes. A significant decrease in error rate is obtained with as little as 5 adaptation sen-
tences. When adapting using a single sentence, the performance is simildefentdif
numbers of transformationsgaept for the case of mtransformations. The reason is that

in our implementation a transformation is reestimated only if the number of absesv

is larger than a threshold; otherwise, we use a global transformation estimated from all
data. Since most of the transformations are éadf to the global transformation for the

case of a single adaptation sentence, the cases viredifnumbers of transformations

exhibit similar performance.

In Figure3 we hae plotted the wrd error rates of the combined scheme for the same
numbers of transformations and adaptation sentences as in EiJure systems used to
obtain the results of Figuare used as priors for the subsequent Bayesian estimation
step, asplained in Section 3. ¥Wcan see that the performance of the combined scheme
becomes less sens#ito the number of transformations used, especially wigledarum-
bers of adaptation sentences. This balrashould be xpected, since Bayesian schemes
will asymptotically comeme to speadr-dependent performance as the amount of adapta-
tion data increases. Maver, when the number of adaptation sentences is small, it is
important to select the appropriate number of transformations avidgtbe Bayesian

step with good prior information.

In Figure4 we compare theavd error rates of the transformation-only method with 20

and 160 transformations, the approximate Bayesian method witbrd@mnal priors, and

the combined method foavious amounts of adaptation data. In the latiter number of
transformations as optimized on an independent test set according todiiatde

amount of adaptation data. The transformation-only method with 20 transformations out-
performs the Bayesian scheme withsemtional priors when feer than 10 sentences are
used for adaptation, whereas the situatioenges as more adaptation sentences are used.

This is consistent with our claim that transformation-based methods adtgtwWwhereas
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Bayesian schemesyebetter asymptotic properties. The performance of the transforma-
tion approach for lgre amounts of adaptation data can be ivguidoy increasing the

number of transformations. In the same figure, we can also see the success of the com-
bined method, which outperforms significantly the firsi methods wer the whole range

of adaptation sentences that wamined. The transformation step yides quick adapta-

tion when fev adaptation sentences are used, and the Bayesian reestimation steesmpro

the asymptotic performance.

Finally, we evaluated the ward error rate of our best-performing configuration on the 1993
Spole-3 deelopment andwaluation sets, and the 199 akiation set of the WSJ corpus
using a trigram language model. Our results for the 1993 test sets, presemiad ih, T
represent the best reported results to date on this ta§kTh‘é] speadr-independent

word error rate for nonnat speakrs is reduced by adtor of 2 using only 40 adaptation
sentences. Using 200 adaptation sentences, theesaekapted error rate of nonnati
spealers for the Neember 1994 test set is 8.2%. This number is comparable to the
spealker-independent wrd error rate of the same recognition system on the 19&3oge

ment and 1994wvaluation sets of nate speakrs, which is 7.2% and 8.1%, respesly.

The impravement in performance is bigger for certain outlier spesakT he first author of

this paper is a nonnaé speakr of American English with a particularly hgaaccent.

His adaptation results for as nyaas 285 adaptation sentences (approximately 40 minutes
of speech) are summarized iable 2, where we see that his spgakdependent error

rate decreases by actor of 4 and 6 using 40 and 285 adaptation sentences, resigecti

His speakr-adapted error rate of 7.1% is comparable to the state-of-the-art performance

for natve speakrs on this task.

5 SUMMARY

We combined the transformation-based adaptation algorithm that we presented in [7] with

Bayesian methods. &\presentedxperiments that compare the performance of transfor-

2. The 1994 dicial ARPA benchmark results were notaglable when this paperag written.
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mation and Bayesian adaptation farieus amounts of adaptation dateafisformation-

based adaptation performs well when only a limited amount of adaptation dadé-is a

able, lut Bayesian methods are better as the amount of adaptation data increases. The
combined method retains the quick adaptation characteristics of transformation methods,
and tales adantage of the nice asymptotic properties of Bayesian schemes as the amount
of adaptation data increases. The combined scheme clearly outperforms both Bayesian
and transformation methodsey the whole range ofwious amounts of adaptation speech
that we @amined. Our baseline results are the best reported to date on thevgsnnati
spealer task of the \Al Street Journal corpus, and our nonreatipea&r-adapted perfor-
mance is comparable to the natspeakrindependent performance with Bcient

amounts of adaptation speech.
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TABLES

# of .
Test Set Adaptation Spealiri-{g(iﬁz/i))endent Speakr-adapted rate (%
Sentences

Development 93 40 23.5 10.3
Evaluation 93 40 16.5 10.0
40 11.3
Evaluation 94 100 23.2 9.4
200 8.2

TABLE 1. Speaker-independent and speaker-adapted word error rateson various
test setsof nonnative speaker s using different amounts of adaptation data.
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System # of Adaptation Sentences| Spealer-adapted rate (%)

Spealer Independen 0 42.7
40 10.6
Spealer Adapted
285 7.1

TABLE 2. Word error ratesfor development speaker 4n0 and various amounts of
adaptation data
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FIGURES

a. Adaptation Using Model Transformation
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6 —>  T[6] N

Adaptation
data

b. Adaptation Using Bayesian Techniques
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c. Adaptation Combining Model Transformation and Bayesian
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FIGURE 1. Hidden Markov model adaptation using transfor mation, Bayesian
and combined techniques
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FIGURE 2. Word error ratesfor various numbers of transfor mations for the
transfor mation-based adaptation
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