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ABSTRACT

Adapting the parameters of a statistical speaker-independent continuous-speech recog-

nizer to the speaker and the channel can significantly improve the recognition performance

and robustness of the system. In continuous mixture-density hidden Markov models the

number of component densities is typically very large, and it may not be feasible to

acquire a sufficient amount of adaptation data for robust maximum-likelihood estimates.

To solve this problem, we have recently proposed a constrained estimation technique for

Gaussian mixture densities. To improve the behavior of our adaptation scheme for large

amounts of adaptation data, we combine it here with Bayesian techniques. We evaluate

our algorithms on the large-vocabulary Wall Street Journal corpus for nonnative speakers

of American English. The recognition error rate is approximately halved with only a small

amount of adaptation data, and it approaches the speaker-independent accuracy achieved

for native speakers.
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1  INTRODUCTION

Automatic speech recognition performance degrades rapidly when there is a mismatch

between the testing and the training conditions, under which the recognizer parameters

were estimated. It may not always be feasible to have consistent conditions in the testing

and training phases. For example, in large-vocabulary dictation applications the speaker-

independent performance degrades dramatically for outlier speakers, such as nonnative

speakers of the recognizer language. Since modern large-vocabulary speech recognizers

have millions of free parameters, it is not practical to collect large amounts of speaker-

dependent data and retrain the recognizer models. Similarly, it is desirable to avoid the

expense of collecting additional data when the recognizer is going to be used on speech

transmitted through a different channel than the one used in training. Such problems may

be solved by adapting the recognizer models, using much smaller amounts of adaptation

data than those used in conventional training techniques. In this paper we focus on adapt-

ing the models to the speaker, although the techniques we describe can also be used at

other levels [1].

One family of adaptation approaches attempts to match the new speaker’s observations to

the speaker-independent training data by transforming the new speaker’s feature space

[2][3][4]. The transformation approach has the advantage of simplicity. In addition, if the

number of free parameters is small, then transformation techniques adapt to the user with

only a small amount of adaptation speech (quick adaptation). A disadvantage of transfor-

mation methods is that they are usually text-dependent, that is, the new speaker must

record sentences with the same text recorded previously by some reference speakers.

Moreover, transformation methods may not take full advantage of large amounts of adap-

tation data.

A second family of adaptation algorithms follows a Bayesian approach, where the

speaker-independent information is encapsulated in the prior distributions [5][6]. The

Bayesian approach is text-independent, and has the nice property that speaker-adaptive

performance will converge to speaker-dependent performance as the amount of adaptation

speech increases. However, the adaptation rate is usually slow.
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In this paper we present adaptation schemes that combine the quick adaptation character-

istics of transformation-based methods with the nice asymptotic properties of Bayesian

methods. We first present a transformation-based method for continuous mixture-density

hidden Markov models (HMMs) that was introduced in [7]. Adaptation is achieved via a

transformation of the speaker-independent observation densities, and the transformation

parameters are obtained using the maximum-likelihood (ML) criterion. The number of

transformation parameters can be adjusted based on the available amount of adaptation

data for quick adaptation. We then show how this algorithm can be combined with Baye-

sian techniques. The combined method adapts to a new speaker with small amounts of

adaptation data and takes better advantage of large amounts of adaptation data than the

transformation method.

2  TRANSFORMATION-BASED ADAPTATION

Transformation-based approaches to speaker adaptation are typically text-dependent, that

is they require the new speaker to record some utterances with predetermined text. These

utterances are aligned to ones recorded by reference speakers, and mappings between the

new-speaker and the reference-speaker acoustic spaces are obtained using regression tech-

niques [3][4][8].

In [7] we presented a novel transformation-based approach to speaker adaptation for con-

tinuous mixture-density HMMs. To eliminate mismatched training and testing conditions,

transformations can be applied either directly to the features, or to the speech models [9].

We chose to apply the transformation at the distribution level, rather than transforming the

feature vectors directly, since we can then use the Expectation-Maximization (EM) algo-

rithm [10] to estimate the transformation parameters by maximizing the likelihood of the

adaptation data (see Figure1a). One advantage of this approach is that the need for time

alignment between new and reference speaker data is eliminated, and the transformation

parameters can be estimated using new-speaker data alone. The estimation of the transfor-

mation can also be viewed as a constrained estimation of Gaussian mixtures.
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For continuous mixture-density HMMs with a large number of component mixtures, it is

impractical to assume that enough adaptation data are available for independent reestima-

tion of all the component densities. The constrained estimation we presented in [7] over-

comes this problem by applying the same transformation to all components of a particular

mixture (or a group of mixtures, if there is tying of transformations). Gaussians for which

there were no observations in the training data are adapted based on data that were most

likely generated by other Gaussians of the same or other neighboring mixtures.

To see how this method can be applied for adaptation, we assume that the speaker-inde-

pendent (SI) HMM for the SI vector process  has observation densities of the form

, (1)

where  is the observation density of the HMM state ,  is the proba-

bility of the i-th mixture component of state,  is the multivariate Gauss-

ian density with mean  and covariance matrix , and g is the index of the Gaussian

codebook used by statest.

Adaptation of this system can be achieved by jointly transforming all the Gaussians of

each mixture. Specifically, we assume that, given the HMM state , the speaker-depen-

dent vector process  can be obtained by an underlying process  through the

transformation

. (2)

and that the underlying process  was generated using the SI model of equation (1).

Under this assumption, the speaker-adapted (SA) observation densities will have the form

(3)

and only the parameters  need to be estimated during adaptation,

whereN is the number of distinct transformations. The same transformations can be

applied to differentHMM states, and this tying of transformations can be used to optimize
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performance based on the amount of available adaptation data. The transformation param-

eters can be estimated using the EM algorithm. The reestimation formulae for the transfor-

mation parameters are derived in [7] and are summarized below.
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1. Initialize all transformations with . Setk=0.

2. E-step: Perform one iteration of the forward-backward algorithm on the speech data,

using Gaussians transformed with the current value of the transformations

. For all component Gaussians and all mixturesg, collect the sufficient

statistics

(4)

where  is the probability of being at statest at timet given the current HMM

parameters, the summation is over all times and HMM states that share the same mix-

ture components, and  is the posterior probability

. (5)

3. M-step: Compute the new transformation parameters. Under the assumption of diag-

onal covariance and transformation matrices, the elementsa andb of

 can be obtained by solving the following equations for eachg

(6)

where for simplicity we have dropped the dependence ong. The variables

are elements of the vectors and diagonal matrices , respectively.

4. If the convergence criterion is not met, go to step 2.
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Once the transformation parameters are determined, the constrained ML estimates for the

means and covariances can be obtained using

. (7)

3  COMBINING TRANSFORMATION AND BAYESIAN-
BASED ADAPTATION

In Bayesian adaptation techniques the limited amount of adaptation data is optimally com-

bined with the prior knowledge. With the appropriate choice of the prior distributions, the

maximuma posteriori (MAP) estimates for the means and covariances of HMMs with

single-Gaussian observation densities can be obtained using linear combinations of the

speaker-dependent counts and some quantities that depend on the parameters of the prior

distributions [5]. We use the termcounts above to denote the sufficient statistics collected

by performing one iteration of the forward-backward algorithm on the adaptation data.

MAP estimates for the parameters of continuous mixture-density HMMs can be obtained

in the same way, as shown in [6]. For example, the MAP estimate for the mean of theith

Gaussian in the HMM mixture density of thegth Gaussian codebookcan be obtained

using [6]

, (8)

where  is the probability of being at statest at timet given the current HMM param-

eters, and  is the posterior probability of theith mixture component

. (9)

The quantities  are parameters of the joint prior density of the mixture parameters,

which was chosen in [6] as a product of the Dirichlet and normal-Wishart densities. The

parameter  is usually estimated empirically and can be used to control the adaptation
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rate. Similar estimation formulae can be used for the covariances of the Gaussians. Based

on (8) and the similar formulae for the second-order statistics, an approximate MAP

(AMAP) estimation scheme can be implemented by linearly combining the speaker-inde-

pendent and the speaker-dependent counts (see Figure1b) for each component density

, (10)

where the superscripts on the right-hand side denote the data over which the following sta-

tistics (counts) are collected during one iteration of the forward-backward algorithm

. (11)

The weight  controls the adaptation rate. Using the combined counts, we can compute

the AMAP estimates of the means and covariances of each Gaussian component density

from

. (12)

Similar adaptation schemes have also appeared for discrete HMMs [11], and can be used

to adapt the mixture weights in the approximate Bayesian scheme described here.

In Bayesian adaptation schemes, only the Gaussians of the speaker-independent models

that are most likely to have generated some of the adaptation data will be adapted to the

speaker. These Gaussians may represent only a small fraction of the total number in con-
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tinuous HMMs with a large number of Gaussians. On the other hand, as the amount of

adaptation data increases, the speaker-dependent statistics will dominate the speaker-inde-

pendent priors and Bayesian techniques will approach speaker-dependent performance.

We should, therefore, aim for an adaptation scheme that retains the nice properties of

Bayesian schemes for large amounts of adaptation data, and has improved performance

for small amounts of adaptation data. We can achieve this by using our transformation-

based adaptation as a preprocessing step to transform the speaker-independent models so

that they better match the new speaker characteristics and improve the prior information in

MAP estimation schemes. To combine the transformation and the approximate Bayesian

methods, we can first transform the speaker-independent counts using the transformation

parameters estimated with the constrained ML method described in Section 2,

. (13)

The transformed counts can then be combined with the speaker-dependent counts col-

lected using the adaptation data

, (14)

and the combined-method models can be estimated from these counts using

. (15)

This procedure is shown schematically in Figure1c.
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4  EXPERIMENTAL RESULTS

We evaluated our adaptation algorithms on the Spoke 3 task of the phase-1, large-vocabu-

lary Wall Street Journal (WSJ) corpus [12][13], trying to improve recognition perfor-

mance for nonnative speakers of American English. Each test set used in this section

consists of ten nonnative speakers of American English whose first languages are broadly

distributed across the major languages. Experiments were carried out using SRI’s DECI-

PHERTM speech recognition system configured with a six-feature front end that outputs

12 cepstral coefficients, cepstral energy, and their first- and second-order differences. The

cepstral features are computed from a fast Fourier transform (FFT) filterbank, and subse-

quent cepstral-mean normalization on a sentence basis is performed. We used genonic hid-

den Markov models with an arbitrary degree of Gaussian sharing across different HMM

states as described in [11]. The speaker-independent continuous HMM systems that we

used as seed models for adaptation were gender-dependent, trained on 140 speakers and

17,000 sentences for each gender. Each of the two systems had 12,000 context-dependent

phonetic models that shared 500 Gaussian codebooks with 32 Gaussian components per

codebook. For fast experimentation, we used the progressive search framework [15]: an

initial, speaker-independent recognizer with a bigram language model outputs word lat-

tices for all the utterances in the test set. These word lattices are then rescored using

speaker-adapted models. We used the baseline 5,000-word, closed-vocabulary1 bigram

and trigram language models provided by the MIT Lincoln Laboratory. The trigram lan-

guage model was implemented using the N-best rescoring paradigm [16], by rescoring the

list of the N-best sentence hypotheses generated using the bigram language model.

In the first series of experiments we used the bigram language model. We first evaluated

the performance of the transformation-based adaptation for various numbers of transfor-

mations and amounts of adaptation data. As we can see in Figure2, where we have plotted

the word error rate as a function of the number of adaptation sentences, multiple transfor-

mations outperform very constrained schemes that use 1 or 2 transformations. The perfor-

1.  A closed-vocabulary language model is intended for recognizing speech that does not include
words outside of the vocabulary.
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mance with 20 and 40 transformations is similar, and is better than the less constrained

case of 160 transformations. However, as the amount of adaptation data increases, the 160

transformations take advantage of the additional data and outperform the more constrained

schemes. A significant decrease in error rate is obtained with as little as 5 adaptation sen-

tences. When adapting using a single sentence, the performance is similar for different

numbers of transformations, except for the case of two transformations. The reason is that

in our implementation a transformation is reestimated only if the number of observations

is larger than a threshold; otherwise, we use a global transformation estimated from all

data. Since most of the transformations are backed off to the global transformation for the

case of a single adaptation sentence, the cases with different numbers of transformations

exhibit similar performance.

In Figure3 we have plotted the word error rates of the combined scheme for the same

numbers of transformations and adaptation sentences as in Figure2. The systems used to

obtain the results of Figure2 are used as priors for the subsequent Bayesian estimation

step, as explained in Section 3. We can see that the performance of the combined scheme

becomes less sensitive to the number of transformations used, especially with larger num-

bers of adaptation sentences. This behavior should be expected, since Bayesian schemes

will asymptotically converge to speaker-dependent performance as the amount of adapta-

tion data increases. However, when the number of adaptation sentences is small, it is

important to select the appropriate number of transformations and provide the Bayesian

step with good prior information.

In Figure4 we compare the word error rates of the transformation-only method with 20

and 160 transformations, the approximate Bayesian method with conventional priors, and

the combined method for various amounts of adaptation data. In the latter, the number of

transformations was optimized on an independent test set according to the available

amount of adaptation data. The transformation-only method with 20 transformations out-

performs the Bayesian scheme with conventional priors when fewer than 10 sentences are

used for adaptation, whereas the situation reverses as more adaptation sentences are used.

This is consistent with our claim that transformation-based methods adapt faster, whereas
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Bayesian schemes have better asymptotic properties. The performance of the transforma-

tion approach for large amounts of adaptation data can be improved by increasing the

number of transformations. In the same figure, we can also see the success of the com-

bined method, which outperforms significantly the first two methods over the whole range

of adaptation sentences that we examined. The transformation step provides quick adapta-

tion when few adaptation sentences are used, and the Bayesian reestimation step improves

the asymptotic performance.

Finally, we evaluated the word error rate of our best-performing configuration on the 1993

Spoke-3 development and evaluation sets, and the 1994 evaluation set of the WSJ corpus

using a trigram language model. Our results for the 1993 test sets, presented in Table 1,

represent the best reported results to date on this task [17]2. The speaker-independent

word error rate for nonnative speakers is reduced by a factor of 2 using only 40 adaptation

sentences. Using 200 adaptation sentences, the speaker-adapted error rate of nonnative

speakers for the November 1994 test set is 8.2%. This number is comparable to the

speaker-independent word error rate of the same recognition system on the 1993 develop-

ment and 1994 evaluation sets of native speakers, which is 7.2% and 8.1%, respectively.

The improvement in performance is bigger for certain outlier speakers. The first author of

this paper is a nonnative speaker of American English with a particularly heavy accent.

His adaptation results for as many as 285 adaptation sentences (approximately 40 minutes

of speech) are summarized in Table 2, where we see that his speaker-independent error

rate decreases by a factor of 4 and 6 using 40 and 285 adaptation sentences, respectively.

His speaker-adapted error rate of 7.1% is comparable to the state-of-the-art performance

for native speakers on this task.

5  SUMMARY

We combined the transformation-based adaptation algorithm that we presented in [7] with

Bayesian methods. We presented experiments that compare the performance of transfor-

2.  The 1994 official ARPA benchmark results were not available when this paper was written.
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mation and Bayesian adaptation for various amounts of adaptation data. Transformation-

based adaptation performs well when only a limited amount of adaptation data is avail-

able, but Bayesian methods are better as the amount of adaptation data increases. The

combined method retains the quick adaptation characteristics of transformation methods,

and takes advantage of the nice asymptotic properties of Bayesian schemes as the amount

of adaptation data increases. The combined scheme clearly outperforms both Bayesian

and transformation methods over the whole range of various amounts of adaptation speech

that we examined. Our baseline results are the best reported to date on the nonnative-

speaker task of the Wall Street Journal corpus, and our nonnative speaker-adapted perfor-

mance is comparable to the native speaker-independent performance with sufficient

amounts of adaptation speech.
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TABLES

Test Set
# of

Adaptation
Sentences

Speaker-independent
rate (%) Speaker-adapted rate (%)

Development 93 40 23.5 10.3

Evaluation 93 40 16.5 10.0

Evaluation 94

40

23.2

11.3

100 9.4

200 8.2

TABLE 1. Speaker-independent and speaker-adapted word error rates on various
test sets of nonnative speakers using different amounts of adaptation data.
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System # of Adaptation Sentences Speaker-adapted rate (%)

Speaker Independent 0 42.7

Speaker Adapted
40 10.6

285 7.1

TABLE 2. Word error rates for development speaker 4n0 and various amounts of
adaptation data
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FIGURES

FIGURE 1. Hidden Markov model adaptation using transformation, Bayesian
and combined techniques
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FIGURE 2. Word error rates for various numbers of transformations for the
transformation-based adaptation
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FIGURE 3. Word error rates for various numbers of transformations for the
combined method
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FIGURE 4. Word error rates for transformation-only, approximate Bayesian, and
combined schemes
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