
23

FIGURES

FIGURE 1. Average error in the channel estimate (as a percentage of the total variance) as a
function of the estimation interval (in seconds) for cepstral coefficients C1 through C8
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Description of the Experiment
Train
Data

Test
Data

Word
Err or
(%)

Baseline CC CC 68.1

Cross-Database WSJ CC 71.5

Cross-Database in Noisy Data WSJ nCC 78.9

Adaptation of WSJ Gaussian Mixtures WSJ/CC CC 69.7

CC Booted from WSJModels WSJ/CC CC 67.1

TABLE 8. Summary of cross-database acoustic training results on the credit card task
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1. Results are word error rate on the 400-sentence simultaneous test set.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

71.4 79.8 60.1 70.8 49.5 71.4 53.5 78.0 68.0 51.1 25.1 57.9

TABLE 5. Inter -speaker variance of the cepstral mean measurements as a percentage of the total
variance

Parameter HQ TQ
Sampling Rate 16 kHz 8 kHz

Number of FFT
Coefficients

256 128

Number of Cepstral
Coefficients

12 8

Number of Filters 25 18

Total Bandwidth 100-6400 Hz 300-3000 Hz

TABLE 6. Parameters used in the high-quality (HQ) and telephone-quality (TQ) front ends

Acoustic Model Training

Test Set

Word Err or (%)

Training
Data Signal Processing

Sennheiser
(HQ data)

Telephone
(TQ data)

Sennheiser
(HQ)

High-Quality Front End 7.8 19.4

Sennheiser
(HQ)

Telephone Front End 9.0 9.7

Telephone (TQ) Telephone Front End 10.0 10.3

Sennheiser
(HQ)

Telephone Front End

without Cepstral-Mean
Normalization

9.4 11.2

TABLE 7. Effect of different training and signal processing on test set performance.1
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Mic Type Micr ophone Description

A Radio Shack Pro-Unidirectional Highball 33-984

B Sony ECM-55

C Sony ECM-50PS

D Crown PCC-160 Phase-Coherent Table-Top

E Shure SM91 Unidirectional Condenser

F AT&T 720 Handset with Speech over Local Telephone Lines

G AT&T 720 Speaker Phone with Speech over Local Telephone Lines

H Crown PZM-6FS Pressure Zone Table-Top

TABLE 2. Listing of micr ophone types in development test set

Algorithm
Sennheiser
Micr ophone

Other
Micr ophone

Cepstral Mean
Removal

14.5 22.8

DFT Equalization 14.4 22.6

TABLE 3. WSJ 5K NVP Development test set word error rate

Algorithm
Word Err or Rate

(%)

CMN 21.6

Channel Estimation 21.4

TABLE 4. Channel equalization results on WSJ development test set
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TABLES

Spkr
Index

Senn
Error
Rate

OMic
Error
Rate

Error
Ratio

(OMic/
Senn)

Mic

Relative Distortion

Cep
D

Cep
DD
Cep

Egy
D

Egy
DD
Egy

Avg

426 7.3 5.2 0.7 A 0.60 0.57 0.60 0.23 0.19 0.20 0.40

22h 6.3 8.0 1.3 B 0.56 0.58 0.61 0.40 0.41 0.44 0.50

22k 12.5 16.8 1.3 B 0.48 0.54 0.58 0.34 0.27 0.30 0.42

052 9.0 10.4 1.2 C 0.65 0.66 0.68 0.73 0.55 0.57 0.64

061 8.2 11.0 1.3 C 0.59 0.62 0.65 0.65 0.50 0.53 0.59

00b 15.7 24.8 1.6 C 0.60 0.61 0.63 0.68 0.47 0.50 0.58

001 5.6 6.9 1.2 D 0.62 0.59 0.61 0.58 0.43 0.45 0.55

00d 21.0 34.5 1.6 D 0.72 0.73 0.77 0.49 0.31 0.32 0.56

22l 10.4 17.2 1.7 D 0.58 0.62 0.65 0.53 0.47 0.50 0.56

22g 6.7 11.9 1.8 D 0.62 0.68 0.72 0.60 0.51 0.54 0.61

431 17.7 32.5 1.8 E 0.63 0.65 0.67 0.70 0.50 0.51 0.61

422 20.9 40.1 1.9 F 0.92 0.81 0.82 0.38 0.31 0.33 0.60

400 13.8 30.7 2.2 G 0.83 0.81 0.83 0.53 0.61 0.65 0.71

423 9.6 24.8 2.6 G 1.00 0.87 0.87 0.43 0.50 0.55 0.70

424 12.3 32.0 2.6 G 0.99 0.90 0.92 0.52 0.63 0.68 0.77

00c 16.5 38.5 2.3 H 0.78 0.79 0.82 1.14 0.74 0.76 0.84

051 8.3 23.1 2.8 H 0.80 0.86 0.90 1.20 0.69 0.72 0.86

060 8.7 24.8 2.9 H 0.76 0.77 0.79 0.97 0.66 0.69 0.77

Avg 11.7 21.8 1.8 0.71 0.70 0.73 0.62 0.49 0.51 0.63

TABLE 1. Err or rate and distortion for 18 WSJ0 development test speakers
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4  SUMMARY

To compensate for channel and microphone mismatch we investigated the validity of two

simplifying assumptions of the popular cepstral-mean normalization algorithm. To

remove these assumptions, we introduced two new channel normalization algorithms. Our

experimental results showed that on the WSJ alternate-microphone task the cepstral-mean

normalization algorithm was as effective as the proposed channel normalization algo-

rithms.

We also presented our approach to developing acoustic models for telephone applications.

We showed that we can take advantage of existing, “high-quality” data and achieve simi-

lar performance with cross-database training to that obtained using task-dependent train-

ing.
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To test our ideas on the CC task we decided to train the acoustic models using 7,000 WSJ

sentences. For the CC task, training the models with WSJ data presents mismatches along

a number of dimensions, which include:

- Acoustics of recording (high-quality versus telephone)

- Vocabulary independence (WSJ does not have the same focus as the credit card conver-
sations)

- Amount of training data (WSJ has 7000 training sentences, CC has 1000)

- Speaking modes (read versus spontaneous speech)

We ran the recognition experiments using SRI’s DECIPHER ™ phonetically-tied mixture

system with a TQ front end. All the recognition experiments are gender-dependent, use a

bigram grammar, and are expressed in terms of word error rate. The test consisted of 167

sentences. The results are summarized in Table8. In the baseline experiment, where we

trained and tested the models using CC data, the error rate was 68%. The cross-database

experiment yielded a slightly higher error of 71.5%. We also tested the WSJ-trained mod-

els with a noisy version of the test set (nCC). The data was corrupted with mid-continental

US voice channel effects and highway noise recorded in the interior of a Ford Taurus on

the highway. The average signal-to-noise ratio after adding the noise was 20 dB. The error

for the nCC test set was 78.9%.

To improve performance in the cross-database experiment we adapted the distributions of

the HMM using the CC train set. To adapt the models we reestimated the parameters of the

Gaussian distributions (means and variances) using the forward-backward algorithm [13].

The mixture weights and state transition probabilities remained unchanged. This approach

reduced the error to 69.7%. Finally, we ran two additional iterations of the forward-back-

ward algorithm on the WSJ-trained models using the CC train set. This run produced the

best result of 67.1% error rate.

The cross-database results are very close to the baseline despite the mismatches between

the two databases. Based on previous experiments, we believe that the difference in the

results is more likely to be caused by mismatches in speaking modes and vocabulary than

in the acoustics of the recording environment.
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used (9.0% and 9.7% error respectively). Here the robustness of the recognizer is

increased at the expense of performance in the HQ test condition. The next line in the

table shows that training the models with TQ data actually degrades performance even for

the TQ test condition (10.0% and 10.3% for HQ test and TQ test conditions). This is an

important result since it indicates that we can train TQ models using HQ data with no deg-

radation in performance. This is no longer true when we eliminate the cepstral-mean nor-

malization (CMN) algorithm [2] as shown in the last line of the table. This degradation in

performance is caused by the stationary convolutional noise (9.4% and 11.2% for HQ test

and TQ test conditions when CMN is not used).

In summary, we can train the recognizer models using a telephone bandwidth front end

and high-quality training data. The drawback of the method, however, is that separate

models have to be trained for HQ and TQ applications. Another limitation of this experi-

ment is that all the telephone data were recorded using the same local telephone line.

Therefore we cannot predict from these experiments on a small stereo speech corpus how

the variability of a wider telephone network will affect the recognition performance. For

this reason, we test telephone models trained with HQ data on a more realistic database:

the Switchboard speech corpus.

3.3  Experimental Results on the Switchboard Corpus

In this experiment we also show how to train HMM models for OTP applications using a

HQ database and how they compare to models trained with TQ data. The test is performed

on theCredit-Card (CC) task that is part of theSwitchboard [12] speech corpus, a large

speech database recorded over the public telephone network. For training we use the WSJ

database that was recorded using high-quality Sennheiser microphones. The CC corpus

consists of spontaneous telephone conversations between two individuals talking about

issues related to credit cards. In contrast, the WSJ corpus was recorded from subjects read-

ing sentences extracted from theWall Street Journal newspaper.
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We will focus on the design of robust features for OTP applications by using a standard

filterbank-based front end [8] tuned for telephone-bandwidth applications. In Table6 we

show the parameters used in our wide-bandwidth (HQ) and telephone-bandwidth (TQ)

front ends5. The main difference in the signal analysis stage is the total bandwidth of the

filterbank. Both front-end signal processing modules produce six feature streams: cepstral

energy (C0), cepstrum and their first- and second-order differences. The mean of each cep-

stral coefficient is removed on a per-sentence basis.

3.2  Experimental Results on the ATIS Corpus

We have considered some of the approaches mentioned in Section3.1 in the past [9][10]

and found that an adequate front end can minimize the mismatch between the acoustic

spaces. In fact, in a pilot study conducted at SRI [9], we found that the variability intro-

duced by the telephone handsets had little effect on recognition performance.

For our pilot study, we collected a corpus of both training and testing speech using simul-

taneous recordings made from subjects wearing a Sennheiser HMD 414 microphone and

holding a telephone handset. The speech from the handset was sent over local telephone

lines. Ten different handsets were used by 13 male subjects (10 for training and 3 for test-

ing) who read ATIS (Air Travel Information System) sentences [11]. The selected tele-

phones included three carbon button, two inexpensive Radio-Shack, and a variety of

telephones found in our lab. The amount of data was 3,000 sentences for training and 400

sentences for testing.

Table7 shows the results for different training and testing conditions. When the models

are trained with HQ data and the HQ front end is used to generate the features we get the

best possible result in the train HQ/test HQ condition (7.8% word error rate) and the worst

result when we test on the TQ data (19.4%). This shows how the error is doubled due to

the mismatch in the higher frequencies of the spectrum. The difference in error rate

between the test HQ and test TQ conditions is greatly reduced when the TQ front end is

5.  We shall use HQ/TQ to denote both the high-/telephone-quality data and the wide-/telephone-bandwidth
front end, respectively.
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to obtain the channel estimate has on the accuracy of the estimate. As usual, we assumed

that the channel does not vary within each speaker’s 20-sentence section. Under this

assumption, we can accurately estimate the channel response in the cepstral domain by

computing the average of each cepstral coefficient over the whole 20-sentence section. We

can then use this channel estimate to compute the average error in the less accurate chan-

nel estimates that are obtained using shorter intervals. In Figure1 we have plotted the

error in the channel estimate as a percentage of the total variance of the corresponding

cepstral coefficient and as a function of the estimation interval’s length. The plots are aver-

aged over all the intervals, sentences and speakers. We can see that, for an estimation

interval of 8 seconds, the estimation error is small, and varies from 1.2% to 4.8% for dif-

ferent cepstral coefficients. The average estimation error over all cepstral coefficients for

8-second long intervals is 2.5%.

3  TRAINING ISSUES

3.1  Construction of Telephone-bandwidth Acoustic Models

Our objective is to train an HMM recognizer for over the telephone (OTP) applications

without collecting specific training data for each task. For example, we would like to use

available large speech corpora recorded with high-quality (HQ) microphones instead of

collecting data over the telephone network. Here we show that the variability in the acous-

tics of the telephone quality (TQ) recordings has little impact on performance as long as:

(1) cepstral mean normalization is used to compensate for channel variations, and (2) the

signal analysis matches the spectrum of the telephone channel.

To avoid collecting new training data for a task in which there is a mismatch between

training and test conditions, there are a number of possible approaches:

• Design robust features that are not affected by the variations in the microphone, back-
ground noise, channel distortion, and so forth.

• Adapt the parameters of the acoustic models.

• Map features between the test and train acoustic spaces. This means that we make the
data used for testing look like the data used for training.
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the serious channel mismatch between the Sennheiser recordings and the secondary-

microphone recordings in the WSJ corpus, the results were essentially the same (21.6%

with CMN and 21.4% with the proposed channel estimation algorithm). This indicates

that the underlying assumption that  is independent of the sequence of distribu-

tions that generated  is fairly accurate for these long sentences (~8 seconds).

To test this hypothesis, we must compare for each speaker and channel the variation in the

measurements of  when the transcription is fixed to the variation in the measure-

ments of the same quantity when the transcription varies. To perform this comparison, we

have to collect multiple recordings of each transcription for each speaker/channel combi-

nation. Assuming that the channel characteristics do not vary over the different recordings

for a particular speaker/channel combination, we can then measure the cepstral mean for

each sentence and group these measurements into sets based on the sentence transcription.

Our hypothesis is then equivalent to the hypothesis that for each speaker/channel the aver-

ages of the cepstral mean values of the different groups are equal.

Since we did not have data to test this hypothesis directly, we measured the cepstral mean

values for all 360 sentences in the test set. The variability in these measurements consists

of two terms: the variability in the speaker/channel-dependent measurement of the chan-

nel h and the variability in the measurement of (see (8)). Assuming that the

channel characteristics do not vary during the 20-sentence section of each of the 18 speak-

ers, then we can estimate each one of these two sources of variability by comparing the

variance of the cepstral mean measurements within each 20-sentence section to the total

variance. The results of these measurements for all 12 cepstral coefficients are presented

in Table5, where we show the inter-speaker squared error as a percentage of the total

squared error. We can see that the inter-speaker variance represents the larger amount of

the total variance for most cepstral coefficients.

This result agrees with our experimental finding that for the long WSJ sentences a satis-

factory estimate of the channel can be obtained using CMN. Hence, we decided to per-

form an additional experiment to investigate the effect that the length of the interval used

1 N⁄( ) xn∑
xn

1 N⁄( ) xn∑

1 N⁄( ) xn∑
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For each speaker, the word error rate4 is given in Table 1 for the Sennheiser channel as

well as the secondary microphone channel (denoted OMic for Other Microphone). The

ratio of these word-error rates is shown in the fourth column. The normalized mean-

squared error distortion between the Sennheiser and the secondary microphone features

was computed for each of the six features. They are listed in subsequent columns, fol-

lowed by an average of all six distortions. Note that the word-error rate and the average

distortion are fairly constant across speakers for a given OMic condition. The results, pre-

sented in Table3, show that CMN is as effective as the LDMN equalization algorithm. To

explain this result, we can either assume that the variation of convolutional noise within a

spectral band is negligible, or that there are other factors that swamp its effects on recogni-

tion performance.

In a second experiment we compared the joint channel and model estimation algorithm to

CMN on the same database. The joint channel/model estimation algorithm was imple-

mented as follows. At each iteration during training, the most likely state sequence was

estimated for each utterance in the training set. Equalization was performed in the cepstral

domain: a separate estimate of the channel response was obtained for each utterance using

(10), and subsequently subtracted from the cepstral vectors. Compensation was followed

by an iteration of the forward-backward algorithm. We computed a total of two iterations

of the sequential EM algorithm during training. During recognition, an initial estimate of

the channel was obtained using CMN. The most likely state sequence was obtained from

the Viterbi alignment of a first recognition pass, and a more accurate estimate of the chan-

nel response was found using (10). A second recognition pass was then performed after

subtracting the new channel estimate from the cepstral vectors.

The results are summarized in Table4. In this experiment we used a phonetically-tied

mixture system—that is, it had a smaller degree of mixture sharing than the tied-mixture

system used in the first experiment. In this system, all context-dependent models with the

same center phone use the same mixture components in their output distributions. Despite

4.  The average word error rate in Table1 is slightly different than the one showed in Table3 because they
have been computed with different training procedures.
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mate based ona-priori knowledge is used to obtain the most likely state sequence. This

state sequence can then be used to refine the channel estimate using (10), and the proce-

dure can be iterated.

2.3  Experimental Results

To compare both normalization algorithms presented in Section2.1 and Section2.2 to the

conventional CMN algorithm, we tested the algorithms using SRI’s DECIPHER ™ con-

tinuous speech recognition system [6][7] on the 5,000-word alternate microphone task of

the WSJ corpus. The system is configured with a six-feature front end that outputs 12 cep-

stral coefficients, cepstral energy, and their first- and second-order differences. The ceps-

tral features are computed from an FFT filterbank. We used genonic hidden Markov

models that allow an arbitrary degree of Gaussian sharing across different HMM states as

described in [6]. For fast experimentation, we used the progressive search framework [7]:

an initial recognizer with a bigram language model outputs word lattices for all the utter-

ances in the test set. These word lattices are then rescored using our channel normalization

algorithms. The models were trained using the large-vocabulary WSJ corpus recorded

with a close-talking Sennheiser3 microphone from male speakers. For testing we used a

test set with simultaneous recordings. One channel contains speech recorded with the Sen-

nheiser microphone, and the other channel was recorded using 8 different low-quality

microphones and telephone handsets. There were 18 male speakers in the test set. Each

speaker recorded 20 sentences, for a total of 360 sentences. In Table1, the different speak-

ers are grouped by secondary microphone type. The secondary microphone types are

listed in Table2. We first compared the LDMN algorithm to the conventional CMN. In

this experiment we used a tied-mixture HMM system, with all HMM states sharing the

same mixture components.

3.  All product names used in this paper are the trademark of their respective holders.



8

For fixed HMM parameters, (14) also guarantees that the likelihood does not decrease,

(16)

Therefore, every combined iteration of (13) and (14) guarantees that the likelihood

 does not decrease. For simplicity, however, and if we assume that the most

likely state sequence is dominant [5], we can replace (14) by

(17)

and the channel estimate above can be computed using (10).

Recognition

In recognition, we want to determine the most likely state sequence. This implies that we

should jointly maximize over the state sequence and the channel

(18)

and the maximization above can be performed by an alternation between maximizing over

the state sequence and over the channel estimate, which is similar to the training algorithm

described in the previous section.

To summarize, we presented algorithms that jointly estimate the HMM parameters and the

channel during training, and the most likely state sequence and the channel during recog-

nition. During training, we assume that the training data can be split into blocks and that

the channel characteristics do not vary with time within each block. These blocks can be

either single utterances, or sessions with multiple utterances. A single estimate of the

channel response in the cepstral domain is estimated for each block. The training algo-

rithm alternates between estimating the channel response and using the new channel esti-

mate to obtain refined estimates for the HMM parameters. Hence, the output distributions

directly model the cepstrum of the clean signal. During recognition, an initial channel esti-

p Y | θN hN,( )log p Y | θN hO,( ) .log≥

p Y | θ h,( )

hN argmax
h

p Y | S θN h, ,( )=

max
S h,

p Y S | θ h, ,( )
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Training

When the state sequence is not given, then one can use the Expectation-Maximization

(EM) algorithm [4] to jointly estimate the channel and the HMM parameters by maximiz-

ing at each iteration the objective function

(12)

where  andhO are the parameters from the previous iteration and, andhN are the

reestimated parameters.

The solution to the maximization problem above is fairly complex, however, and the chan-

nel and model estimates can alternatively be obtained by an iterative procedure, where one

alternates between obtaining estimates of the model parameters and the most likely state

sequence, and using these estimates to compute the estimate for the stationary channel.

Each iteration of the algorithm is therefore broken down into two steps:

1. Using the previous channel estimate, reestimate the model parameters using a

nested EM procedure:

(13)

whereS denotes the most likely state sequence using the current model and channel esti-

mate.

2. Obtain a new channel estimate by maximizing the likelihood of the observations given

the newly obtained model parameters:

(14)

The EM procedure described in (13) is guaranteed that the likelihood will not decrease for

a fixed channel estimate, that is

(15)

θN hN,( ) argmax
θ h,

E p Y S | θ h,,( )log | Y θO hO, ,{ }=

θO θN

hO

θN argmax
θ

E p Y S | θ hO, ,( )log | Y θO hO, ,{ }=

θN

hN argmax
h

p Y | θN h,( )=

p Y | θN hO,( )log p Y | θO hO,( )log≥
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this introduces an error in the true speech cepstrum, which may lead to recognition errors.

A better approach is to try to jointly estimate the channel and the HMM parameters dur-

ing training, and the channel and the state sequence during recognition.

Let us first assume that the HMM state sequence  is given. Then, the

maximum-likelihood channel estimate is given by

(9)

whereY is the collection of observations,S is the state sequence, are the HMM parame-

ters andh is the channel. For Gaussian output distributions, it can be shown [3] that this

estimate is given by

(10)

where the HMM output distribution

(11)

is a multivariate normal distribution with a state dependent mean  and covariance

. Hence, when the state HMM sequence is given, the channel estimate can be

obtained as a weighted combination of the deviations of the observed features from the

means of the HMM output distributions that are specified by that state sequence. The

weights depend on the covariances of these output distributions. For HMMs with continu-

ous mixtures as output distributions, (10) can be applied when both the state and the mix-

ture index are known.

Below we examine how this channel estimate can be incorporated in the training and rec-

ognition problems.

h

sn[ ] , n 0, ... , N-1=

ĥ argmax
h

p Y | S θ h, ,( )=

θ

ĥ C sn( )( ) 1–

n
∑

1–

C sn( )( ) 1– yn µ sn( )–( )
n
∑=

p xn | sn( )
� �

µ sn( ) ; C sn( )( )=

µ sn( )

C sn( ) ĥ
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where  is the equalized DFT energy, N is the number of frames in the sentence, and

 is the equalization factor for thek-th DFT energy component in the current sentence.

With this algorithm we can eliminate the stationary convolutional noise in the sentence

without the assumption that  is constant within the spectral band.

2.2  Joint Channel and Model Estimation

Using CMN to perform channel equalization is tantamount to the underlying assumption

that the sample cepstral average of the “clean” signal is an invariant quantity. This

assumption is clearly violated when CMN is used to estimate the channel in short utter-

ances. We present a different approach for jointly estimating the channel and the HMM

parameters during training, and for obtaining the channel and the most likely state

sequence during recognition.

In the cepstral domain, the observed speech signal corrupted by stationary convolutional

noise can be written as

(7)

where is the cepstrum of the channel response, is the clean speech cepstrum at each

frame  in the sentence, and we assume that the channel characteristics do

not vary with time over a single sentence. In CMN the estimated channel is computed as

a time average of all the frames in the sentence

(8)

If we assume that the sequence is modeled using HMMs with Gaussian observation

distributions, then CMN will give an unbiased estimate ofh only when is zero,

or more generally, independent of the sequence of distributions that generated.

In practice, the above average will not be constant since it depends on the sequence of dis-

tributions that generated , that is, on the transcription of the sentence. The CMN algo-

rithm will interpret these fluctuations as channel variations, and remove them. In effect,
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Consider the following speech signal corrupted with stationary convolutional noise,

(1)

where  is the clean speech sequence,  is the impulse response of the channel,

and  is the distorted speech. After applying the Discrete Fourier Transform to a

frame2 of speech, we get the spectral energy equation,

(2)

wherek is the DFT index andn is the frame index. The log filterbank energy is given by

(3)

where  is the filterbank energy for bandl in frame n and  is a filter weight coeffi-

cient (this coefficient is zero outside the spectral band of the filter). If we assume that is

constant within the frequency bandl,

(4)

we can express the log filterbank energy as follows:

(5)

and the constant term  is eliminated with cepstral mean subtraction.

To avoid the approximation in (4), we can simply normalize the spectrum in the log-DFT

domain before the filterbank integration as follows:

(6)

2.  The waveform is subdivided in a sequence of overlapping segments called frames, usually at intervals of
10-20 ms. Each frame is windowed before computing the DFT.

y t[ ] x t[ ] h t[ ]⊗=

x t[ ] h t[ ]

y t[ ]
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k
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m 0=
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1
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----------------------------------------------
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telephone-bandwidth speech, we are able to achieve with cross-database training similar

performance to task-dependent training.

The remainder of this paper is organized as follows. In Section 2, we explore two different

channel normalization algorithms. The first algorithm performs cepstral normalization in

the log-DFT domain rather than in the log-filterbank domain. The second algorithm

jointly estimates the channel and the HMM parameters during training, and the channel

and most likely HMM state sequence during recognition. The performance of these two

equalization algorithms is similar to the cepstral-mean removal algorithm on the alternate-

microphone task of theWall Street Journal (WSJ) corpus [1]. In Section 3, we discuss

techniques to train acoustic models with data recorded with a high-quality Sennheiser

microphone for use over the telephone.

2  CHANNEL EQUALIZA TION

Although cepstral-mean normalization (CMN) is a simple technique that has been effec-

tively used for convolutional noise removal [2], it still entails a few simplifying assump-

tions. In this section we present two novel algorithms that remove these assumptions.

2.1  Spectral Equalization in the log DFT Domain

We first compare CMN to a different approach for the removal of stationary convolutional

noise, “log-DFT mean normalization” (LDMN), and show that CMN is suboptimal when

the cepstrum is computed as a linear transformation of the filterbank log energies. Specifi-

cally, we show that CMN can remove stationary convolutional noise only when the mag-

nitude of the DFT of the channel’s impulse response is constant in each spectral band of

the filterbank. We also show that we can overcome this assumption by equalizing the spec-

trum in the log-DFT domain.

In a filterbank-based front end, the DFT energies are integrated to compute the mel-filter-

bank energies. The log filterbank energies are used to compute the mel-cepstrum, which is

normalized by removing its mean in each sentence.
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1  INTRODUCTION

In many practical situations, an automatic speech recognizer has to operate in various but

well-defined acoustic environments. The training corpus, however, is usually recorded

with acoustic conditions that may not exactly match those encountered in the field. This

mismatch between the acoustics of the training and testing data will degrade the accuracy

of the recognizer. To overcome the data mismatch problem without collecting a new train-

ing corpus for each acoustic environment, we need a representation of the speech signal

that is invariant across the acoustic spaces. Our purpose is to evaluate different techniques

that facilitate the construction of acoustic models for speech recognition applications over

a telephone channel.

The traditional approach to building speech recognizers is to collect training data under

conditions that match as closely as possible the environment in which the recognizer will

be used. To attain the best possible recognition performance, researchers typically try to

match the language characteristics and acoustic environment in the training and testing

phases. However, if there is no mismatch between the language characteristics of the train-

ing and testing data, then one can alternatively use algorithms to correct theacoustic mis-

match between the training and testing corpora. This approach eliminates the need to

collect speech data for each new acoustic environment. We will follow a twofold algorith-

mic approach to the acoustic mismatch problem. We first use a channel equalization algo-

rithm that minimizes the channel mismatch between training and testing. We will compare

a number of different equalization algorithms that remove some of the simplifying

assumptions in the widely used sentence-based cepstral-mean removal, and show that the

simple cepstral-mean removal algorithm is highly effective in correcting channel distor-

tions. Once the channel distortion is reduced, our second main goal is to select a front end

that is suitable for the testing conditions. In telephone applications, for example, the spec-

tral bandwidth of the channel is limited to 3 kHz. Most of the spectral energy and the rele-

vant information required for speech recognition are contained in this range. Hence,

limiting the bandwidth can only increase the robustness of the recognizer to channel dis-

tortions and background noise. We show that by designing an appropriate front end for
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