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ABSTRACT

SRI International is currently involved in the development of a new
generation of software systems for automatic scoring of
pronunciation as part of theVoice Interactive Language Training
System (VILTS) project. This paper describes the goals of the
VILTS system, the speech corpus, and the algorithm development.
The automatic grading system uses SRI’s Decipher™ continuous
speech recognition system [1] to generate phonetic segmentations
that are used to produce pronunciation scores at the end of each
lesson. The scores produced by the system are similar to those of
expert human listeners. Unlike previous approaches in which
models were built for specific sentences or phrases, we present a
new family of algorithms designed to perform well even when
knowledge of the exact text to be used is not available.

1. INTRODUCTION

Computer-aided language instruction has been evolving from
simple systems with exercises based on text and static pictures to
more advanced systems that accept user input text or pointing, and
may also involve speech output. More recently, the possibility of
accepting speech input began to become practical. The addition of
speech input allows developers to complement reading and
listening comprehension (receptive skills) with more active
activities of production and conversation. In these systems, the
computer may provide some feedback of the kind that an instructor
would produce, such as an assessment of the quality of
pronunciation or pointing to specific production problems or
mistakes. Speech recognition technology is key in allowing such
feedback. However, standard speech recognition algorithms were
not designed with the goal of speech quality assessment; therefore,
new methods and algorithms must be devised to match the
perceptual capabilities of human listeners to grade speech quality.

Previous work at SRI [2, 3, 4] used speech recognition technology
to score the pronunciation of Japanese students speaking English
over the telephone based on fixed text prompts. Knowledge of the
text can be used to compute robust pronunciation scoring
algorithms, but limits generalizability, since new lessons will
require additional data collection. We refer to this class of
algorithms astext-dependent because they rely on statistics related
to specific words, phrases, or sentences. Measures related to the
likelihood of segmental spectral features and duration were found to
correlate very well with human ratings.

Recently SRI started development of the VILTS project [5] to
incorporate spoken language technology in a system geared toward
training foreign language students. The first version of the system
was designed to teach French to students whose first language is
American English. The system elicits speech through various
language instruction activities designed to ensure that the
recognizer produces a correct transcription of the recordings 99% of
the time. This transcription is used to produce an accurate phonetic
segmentation used by the system to produce pronunciation scores
that correlate well with those of expert human listeners.

The VILTS software is designed to be extensible and flexible;
language instructors should be able to modify and design lessons
without expert knowledge in speech recognition technology. To
achieve this goal, we developed text-independent pronunciation
scoring algorithms. To develop the algorithms, an extensive speech
corpus was designed and collected.

2. THE VILTS CORPUS

The VILTS project required data for speech recognition, for
pronunciation algorithm development, and to provide core lesson
material. Speech was recorded from 100 natives of French living in
Paris, strong regional accents were avoided. We refer to this data as
the native corpus. Thenonnative corpus was recorded from 100
American students speaking French. The speech was recorded in
quiet offices using a high-quality Sennheiser microphone. The
natives were recorded in four modes:

• Read speech, common sentences, designed to
include most common pronunciation problems for
American students;

• Read speech, newspaper sentences, which were not
read within the native speaker corpus by more than
one speaker;

• Spontaneous conversations between a subject and
an interviewer; and

• Read speech versions of the conversation
transcripts by the same speakers.

The nonnative corpus consisted of:

• Read speech, common sentences (same sentences
used in the native corpus);

• Read speech, newspaper sentences; and



• Read/imitated speech, in which the subject was able
to listen to a native reading the same sentence
before starting the recording.

Five French teachers, certified language testers, rated the overall
pronunciation of each nonnative sentence on a scale of 1 to 5,
ranging from unintelligible to native quality. About 10% of the data
was rated by all five teachers and twice by each teacher. Multiple
ratings of the same utterance were used to evaluate inter- and intra-
correlations among the raters.

Pronunciations for French words used in the corpus were generated
by a text-to-speech system and revised by a linguist. 37 phonemes
were used, and each word could have multiple pronunciations
(French liaison was modeled using multiple pronunciations).

3. PRONUNCIATION SCORING

Human scores are the reference against which the performance of
the scoring systems is validated. For this reason it is important to
asses the consistency of human scores, both between raters and
within each rater. To measure human consistency and to evaluate
automatic scores we use simple linear correlation techniques.

3.1. Human Scoring

Human judgments were provided by the five raters of speech from
the 100 students. Using the subset of sentences scored by all raters,
we assessed inter-rater correlation based on individual sentence
scores and on individual speakers (Table1).

The level of correlation is reasonably uniform among the pairs of
raters. The correlations at the speaker level are consistently higher
than those at the sentence level, reflecting that the average scores
based on several sentences are more reliable than the scores based
on single sentences. The average correlation between raters at the
sentence level is 0.65 while at the speaker level it reaches 0.8. We
also computed the correlation between a rater and the mean of all
other raters excluding the current one. Table2 shows this type of
correlation at the sentence level and speaker level. This way of
assessing the correlation among raters at the speaker level is similar
to the way the machine scores will be correlated with human scores.
Correlation between a rater and a pool of other raters also suggests
an upper bound on the level of correlation between human and
machine scores. Table 2 also shows the intra-rater correlation,
assessing the consistency of repeated judgments of the same
material by the same rater. In particular, each rater was asked to rate
the same utterance twice, on different days and in different contexts.
As we would expect, comparing with Table1, the intra-rater

correlation is higher than the average of pair-wise inter-rater
correlation (0.65), reaching an average of 0.76.

Descriptive statistics were obtained over the whole set of almost
20,000 human scores of nonnative data from 100 speakers. The
histogram of the scores, using a scale from 1 to 5 described earlier,
from all raters for all sentence types is shown in Table3.

We note a smaller number of level-5 ratings, consistent with the fact
that these are ratings for nonnatives. The maximum of the
distribution is for the score 3, and shows a significant asymmetry
toward lower scores. In Table4, the mean and standard deviation of
the scores given by each rater are shown. The means differ at most
by a half point, and the standard deviations are reasonably similar.

Table 4: Means and standard deviations of scores from each rater.

Table5 shows the average scores for each sentence type. The
average score correlates well with the level of difficulty of the task
(read sentences are more difficult than imitated sentences, and
newspaper sentences more difficult than common sentences).

3.2. Automatic Scoring

We developed various pronunciation scoring algorithms that rely on
phonetic time alignments produced by SRI’s speech recognition
system. To generate the alignments, we must recover the text read
by the student. We do this by eliciting speech in a constrained way
in the language learning activities. The algorithms were designed

Rater 1 2 3 4 5

1 1.00/1.000.61/0.84 0.68/0.75 0.67/0.79 0.70/0.85

2 1.00/1.00 0.60/0.79 0.55/0.74 0.60/0.82

3 1.00/1.00 0.66/0.75 0.70/0.82

4 1.00/1.00 0.72/0.86

5 1.00/1.00

Table 1: Sentence/Speaker-level correlations between raters

Corr elation
Type

Level
Rater Ids

Avg.
1 2 3 4 5

Inter -rater Sent 0.78 0.67 0.77 0.76 0.80 0.76

Inter -rater Spkr 0.88 0.86 0.84 0.85 0.92 0.87

Intra-rater Sent 0.82 0.73 0.86 0.71 0.75 0.76

Table 2: Sentence- and speaker-level correlations. Inter-rater cor-
relations are computed against the average of the other raters.
Intra-rater correlations are computed using two ratings of the same
utterance by the same rater.

Score 1 2 3 4 5

% 9 31 42 15 3

Table 3: Histogram of scores across all sentence types and raters.

Rater ID 1 2 3 4 5 Avg.

Mean 2.5 2.7 3.0 2.5 3.0 2.7

Std. Dev. 0.8 0.8 0.9 0.9 1.1 0.9

Sentence Type Mean

Common Sentences Imitated 3.0

Newspaper Sentences Imitated 2.7

Common Sentences Read 2.8

Newspaper Sentences Read 2.5

Table 5: Means of scores for each sentence type.



according to the following objectives: (1) machine scores must
correlate well with human expert listener scores and (2) no statistics
of specific phrases or sentences should be used (i.e., the algorithms
must be text-independent). Algorithms in four categories were
investigated: hidden Markov model (HMM) log-likelihood scores,
segment classification scores, segment duration scores, and timing
scores. Each of these categories of scores is described below.

3.2.1. HMM Log-Likelihood Scores

In this approach, we use the HMM log-likelihood as scores. The
underlying assumption is that the logarithm of the likelihood of the
speech data, computed by the Viterbi algorithm, using the HMMs
obtained from native speakers is a good measure of the similarity
between native speech and nonnative speech. For each sentence, the
phone segmentation is obtained, along with the corresponding log-
likelihood of each segment. However, for a given level of mismatch
between speech and models, with the standard assumptions in the
HMM framework, the log-likelihood depends on the length of the
sentence. To normalize for the effect of the sentence length we use
the “global average log-likelihood” score [4], defined as:

where
���
 is the log-likelihood corresponding to theith phone and

is its duration in frames, with sums over the number of phones. The
degree of match during longer phones tends to dominate the global
log-likelihood score. Although shorter phones may have an
important perceptual effect, as their duration is smaller, the degree
of mismatch along them may be swamped by that of longer phones.
To attempt to compensate for this effect we use the following “local
average log-likelihood” score  [4], defined as:

where the variables are defined as above. In this score, the degree of
match for each phone is weighted equally regardless of its length.

3.2.2. Segment Classification Scores

Another approach to assessing pronunciation is to compute phone
classification error; if the phone classifier is trained using native
speakers, then the closer the test speaker is to the training
population, the higher the classification accuracy should be. We
implemented a French phone recognizer and used recognition
accuracy as a pronunciation score.

3.2.3. Segment Duration Scores

Relative phone duration should correlate well with the human
expert listener’s scores for psychological and linguistic reasons.
The cognitive load of thinking about how to articulate can disrupt
the speech flow and increase disfluency. Cross-language
differences a nonnative may impose from the native language on the
language being learned can also affect durations of segments.
Differences in letter to sound rules for the orthographies of the two
languages may lead to insertions, deletions or substitutions of
phones that will result in duration differences. Since, to achieve text
independence, we cannot use sentence, phrase, or word durations to

normalize phone durations, we use a measure of rate of speech
(ROS) as the normalization factor. The simplest approach to ROS is
to compute the global rate of speech as the average number of
phones per unit of time for a given speaker. Normalized duration
can be computed as  wheredi is the unnormalized
duration for segmenti andross is the estimated rate of speech for
speakers. To compensate for phone alignment errors near silence,
we investigate the effect of excluding phones in the context of
silence from the train and test data sets.

3.2.4. Timing Scores

Insofar as nonnative speakers tend to speak more slowly than
natives, speaking rate should be a good predictor of fluency and can
be used as a pronunciation score. Other aspects of linguistic timing
can also be exploited since language learners tend to impose the
rhythm of their native language on the language they are learning.
For example, English tends to bestress-timed (stressed syllables
tend to be lengthened and others shortened), while Spanish and
French tend to besyllable-timed. In our investigations a distribution
of normalized syllabic periods is computed between the centers of
vowels within segments of speech. The normalized time between
syllables is used to produce a syllabic timing score.

3.3. Experimental Results

To evaluate the pronunciation scoring algorithms, we used a test set
with an average of 30 common sentences from 100 adult American
speakers with various levels of proficiency in French. The
recordings were verified by the human expert listeners at the same
time that they rated the pronunciations. Listeners were instructed to
reject utterances in which the audio was contaminated during the
recording and those in which the student was seriously disfluent,
stumbled, or had other significant disruptions. A French recognizer
was trained using SRI’s Decipher™ speech recognition system [1].
We used 16,000 utterances from 100 native speakers reading
newspaper text. Phone recognition performance was evaluated
using 37 phonetic classes with a bigram phone model; phone
recognition error rate on this task was 20.6%. We report (Table6).
correlations between machine and human scores computed at the
sentence level (across 3000 sentences) and speaker level (across
100 speakers).

To compute native statistics for the pronunciation algorithms and to
evaluate the correlation between human and machine scores, we
generated phonetic time alignments for all the native and nonnative
data using the Viterbi decoder.

Both global and local HMM likelihoods are very poor predictors of
pronunciation ratings. It is not clear why in the global likelihood
score, correlation decreases when the silence is excluded (A1 vs.
A2). The opposite effect can be observed for the local likelihood
scores (A3 vs. A4). Phone classification results in similar
performance at the speaker level but seems to correlate better at the
sentence level. Segment duration scores produce the best results at
the speaker level. Normalizing duration helps (C1 vs. C2) and
should also increase robustness, as the scores become independent
of the rate of speech. Nonparametric distributions also improve
performance compared to the single Gaussian case (C2 vs. C3).
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This improvement is not surprising since the probability
distribution of phone duration is not Gaussian. Excluding phones in
the context of silence produces a small improvement in correlation
at the speaker level (C4 vs. C3). Sentence-level results are still poor,
suggesting that further work is needed to predict pronunciation
ratings using only a single utterance.

Finally, the timing scores result in acceptable speaker level
correlations. Global rate of speech is a good predictor of
pronunciation rating, confirming that advanced students speak
faster than beginners. However, this score by itself would be a poor
indicator of overall pronunciation given that any speech-like signal
of the right duration could result in high machine scores. Syllabic
timing, however, should be robust to ROS because the durations are
normalized and affected only by the relative duration of the timing
between syllables.

To evaluate the correlation as a function of the amount of test data,
we conducted a second experiment. In this case, we used various
amounts of newspaper text from all 100 nonnative speakers to
compute the correlations. The results are shown in Table 7.

Clearly, correlations improve as the amount of test data increases.
At least five sentences appear to be required to produce reasonable
pronunciation scores. Spectral scores (A4) seem to be more erratic
than duration (C5) and timing scores (D2). Duration scores produce
the best correlation in all cases.

4. SUMMARY

We have presented the algorithms being developed to generate
reliable pronunciation scores. We compared different methods and
found that those based on normalized duration scores produced the
best results. This finding indicates that relative phone duration is a
good predictor of pronunciation proficiency. Moreover, duration
scores should be more robust to stressed conditions such as
background noise or limited channel bandwidth than are pure
spectral scores.
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Exp Algorithm
Corr elation

Sent Spkr

A. HMM Scores

A1 Global log-likelihood, with silence 0.276 0.429

A2 Global log-likelihood, no silence 0.182 0.313

A3 Local log-likelihood, with silence 0.255 0.406

A4 Local log-likelihood, no silence 0.285 0.481

B. Segment Classification Scores

B1 Phone recognition 0.399 0.469

C. Segment Duration Scores

C1
Duration (Single Gaussian per

phone)
0.463 0.735

C2
Normalized duration (Single

Gaussian per phone)
0.452 0.827

C3
Normalized duration (Discrete

distributions)
0.453 0.845

C4
Normalized duration (Discrete

distributions, no silence context)
0.410 0.856

D. Timing Scores

D1 Global rate of speech 0.408 0.685

D2 Normalized syllabic timing 0.355 0.726

Table 6: Sentence and speaker level correlations between human
and machine scores using 100 nonnative speakers and 30 utter-
ances per speaker.

Number of
Sentences

A4 C4 D2

01 0.382 0.512 0.420

05 0.488 0.759 0.669

10 0.490 0.779 0.657

20 0.509 0.816 0.711

30 0.502 0.815 0.712

40 0.493 0.817 0.714

50 0.503 0.830 0.720

Table 7: Speaker-level correlation for various amounts of test sen-
tences using three different methods


