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ABSTRACT

Recently there has been much interest in the area of
adaptation for improved speech recognition in the pres-
ence of mismatches between the training and testing con-
ditions. In this paper we focus on transformation-based
maximum-likelihood (ML) adaptation. Some of the impor-
tant adaptation parameters include whether the adapta-
tion is sbibperformed in the feature-space or model-space,
and whether the adaptation is supervised or unsupervised.
An additional parameter is the adaptation data. For ex-
ample adaptation may be performed using an independent
dataset or the test data itself. The latter is referred to as
transcription-mode adaptation. In this paper, we experi-
mentally study the effect of these various parameters, and
report on our findings.

1. INTRODUCTION

Recently, there has been much interest in the area of
transformation-based ML adaptation to reduce the recog-
nition degradation caused by acoustic mismatches between
the training and testing conditions [1, 2, 3]. Tt is assumed
that the speech hidden Markov models (HMMs) estimated
in the training condition and an adaptation data set col-
lected in the testing condition are available. The problem
is to transform either the features or the models to reduce
the mismatch between the two, and consequently reduce
the degradation in performance caused by the mismatch.
Depending on whether the features or models are being
transformed, the methods are classified as feature-space or
model-space algorithms [1, 4]. The form of the transforma-
tion is hypothesized, and its parameters are estimated by
maximizing the likelihood of the adaptation data using the
expectation-maximization (EM) algorithm [5].

In this paper, we study the effect of different ML-based
adaptation parameters. These parameters include whether
adaptation is performed in the feature-space or model-
space, whether the method is supervised or unsupervised,
and whether the adaptation is done on an independent
adaptation set or on the test set (transcription-mode adap-
tation). In this work, we find that the model-space adap-
tation paradigm is more versatile than the feature-space
paradigm in that several adaptation schemes can be easily
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explored. The model-space approach does not necessarily
follow an underlying assumption of the actual distortion
in the feature-space. However, as opposed to the feature-
space, it makes it easy to estimate complex transformations
of the HMM models. Our experiments show that the model-
space approach results in a significant improvement over the
feature-space approach.

On our test database, where the operating word error-
rate was about 20%, we find that supervised methods,
where the transcriptions for the adaptation data are avail-
able, perform only slightly better than unsupervised meth-
ods, which use the transcriptions from the recognition pro-
cess. At error-rates lower than 20%, since the recognition
transcriptions will have even fewer errors, we expect this
observation will continue to hold. This indicates that at
error-rates of about 20%, unsupervised adaptation can be
used over supervised adaptation, thus removing the neces-
sity of speaker enrollment.

Finally, our experiments show that transcription-mode
adaptation performs almost as well as supervised adapta-
tion. This result is mainly of academic interest, since if the
test data is available for adaptation, it makes intuitive sense
to use it. We were motivated, however, to measure the im-
provement resulting from transcription-mode adaptation.

2. ALGORITHM DESCRIPTION
2.1. Feature-Space and Model-Space Adaptation

We assume that we are given the adaptation data Y, and the
trained HMMs A x, where X is the training data. In feature-
space adaptation, we assume that the adaptation data Y
can be mapped to an estimate of the original features X
by a transformation F,(Y) so that the original models Ax
can be used for recognition. In model-space adaptation,
we assume that the original models Ax can be mapped to
the transformed models Ay by a function G,(Ax). The
models Ay can then be used to recognize the test speech
Y. The parameters of these transformations are estimated
by maximizing the likelihood of the adaptation data. Thus,
in the feature-space we need to find v’ such that

v' = argmax p(Y|v, Ax), (1)

and in the model-space we need to find 5’ such that

n' = argmax p(Y|n, Ax). (2)
7
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The ML problem is solved by the EM algorithm [5] which
iteratively finds the new estimates of the transformation pa-
rameters, given the current estimates. The EM algorithm is
particularly useful when closed-form reestimation formulae
for the transformation parameters can be obtained in each
iteration.

In our work on transformation-based ML estimation, sep-
arate transformations are applied to separate gaussian clus-
ters [2]. More complex functions can be implemented using
a greater number of transformations, each tied to a separate
gaussian cluster. However, as the number of transforms is
increased, a larger amount of adaptation data is needed to
estimate their parameters.

In computing the likelihoods above, we make use of
the HMM state-conditioned observation probability den-
sity function (pdf) py(y.|s:, Ax), where y, is the tth fea-
ture vector, and s; is the state at time ¢. In the case of a
feature-space transformation, assuming that each vector y,
is transformed according to an invertible function f.(y,),
this pdf can be written as

pz(fu(y,)lse, Ax)
|Jv (yt) | ’

where J, (yt) is the Jacobian of the inverse transformation
fl,_l(:ct:). Note that the inverse transformation must exist.

We have experimented with simple affine transformations
of each feature component in the feature-space:

3)

p?/(yt|5t”/’ AX) =

z; = ay; + b. (4)

In this case, closed-form reestimation expressions for the
transformation parameters can be obtained [1, 2]. Note
that the above transformation can be implemented equiva-
lently in the model-space by appropriately transforming the
means and variances of the HMMs.

For more complex transformations such as

r = Ay + b, (3)

where A is a full matrix, the Jacobian computation in
Equation 3 makes closed-form reestimation expressions in-
tractable. However, if we assume that only the HMM means
are transformed by the affine transformation of Equation 5,
and the variances remain unchanged, then closed-form rees-
timation expressions can be derived for the parameters A
and b [3]. This method can be rationalized as a model-
space transformation where there is no underlying feature-
space assumption. We have found that this approach per-
forms better than the component-wise feature-space ap-
proach since it makes use of the dependencies between the
different feature components.

We also note that the model-space approach is more ver-
satile than the feature space approach. For example, we
may separately transform the variances and means of the
models [1, 4]. In addition, we can also explore complex non-
linear transformations such as the neural-network transfor-
mation approach described in [6].

2.2. Supervised and Unsupervised Adaptation

Equations 1 and 2 give the estimation method for the
feature-space and model-space, respectively. In what fol-
lows, we restrict ourselves to the model-space case, since

the equations are similar for the feature-space. Equation 2
can be rewritten as

7 = argmapr(YM,AX,VV)P(W), (6)
” w

where the summation is over all possible word-strings W,
and P(W) is the apriori probability of the word-string
W. P(W) is usually computed using a statistical language
model.

When the correct word-string is known, the method 1is
a supervised adaptation scheme. In this case, we assign a
unity probability to the correct word-string W*, and Equa-
tion 6 becomes

n' = argmax p(Y|n, Ax, W"). (7)
7

In unsupervised adaptation, the correct word-string is not
known. In this case, all possible word-strings must be con-
sidered as in Equation 6. However, we may use an algorithm
based on the recognized word-string Wy, that is,

n' = argmax p(Y|n, Ax, Wy). (8)
7

This is the usual approach to unsupervised adaptation. Al-
ternately, we may use Equation 6, but consider only the top
N word-strings in an N-best framework [7] to reduce the
number of computations.

Note that in the unsupervised methods described above,
it is necessary to first recognize the adaptation data to get
the best word-string or the N-best word-strings. For a large
recognition grammar, this is a significant overhead. In this
paper, we propose a new scheme that removes this overhead.
This is done by writing Equation 2 as

n = argmapr(YM,Ax,ph)P(ph), (9)
n o

where ph is an acoustic subword sequence. We have con-
sidered sequences of context-independent (CI) phones for
this purpose, and evaluated P(ph) by using a model com-
prising a loop of CI phones, where every phone can follow
every other phone with the same probability. While this is
a simple model, we note that it is possible to incorporate
additional knowledge by using a phone bigram or trigram
model in order to compute P(ph).

2.3. Transcription-Mode Adaptation vs. Adapt-
ing on an Independent Set

Unsupervised adaptation may be performed on the test data
itself. This is called transcription-mode adaptation. This
can be contrasted to adapting on an independent dataset.
In applications such as non-real-time recognition of taped
speech, it makes sense to use transcription-mode adap-
tation, since the adaptation and test data are identical.
Transcription-mode adaptation can also be used to adapt
to a particular test sentence. We refer to this as “self-
adaptation”.  Intuitively, we expect transcription-mode
adaptation to perform better than unsupervised adaptation
on an independent data set. In this paper, we experimen-
tally study the effect of using transcription-mode adapta-
tion.



Number of 2 5 10 20
Transforms
Full Matrix 17.9 | 184 | 19.1 | 21.5
Block-diagonal || 18.6 | 18.1 | 17.6 | 18.2

Table 1. Word Error Rates (percent) for Supervised Adap-
tation using Full Matrix and Block-Diagonal Approaches for
different number of transformations

3. EXPERIMENTS

We have experimented with a subset of the 1993 ARPA Wall
Street Journal (WSI) corpus, using a 20,000-word vocabu-
lary bigram language model. In the experiments reported
here, the speaker-independent (SI) models were trained us-
ing the WSJ native American speech training database, and
adaptation was used to improve the performance for native
American test speakers. The test set contained 10 male
speakers each uttering about 25 sentences for a total of 230
utterances. For supervised adaptation we used the 40 com-
mon adaptation utterances from each speaker. For unsuper-
vised adaptation, we used either the 40 common sentences
or the test sentences from each speaker (transcription-mode
adaptation).

The ST word error-rate on this database was 20.9%. We
summarize the results of our adaptation experiments below.

3.1. Feature vs. Model Space

For feature-space adaptation, we used the component-wise
affine transformation given by Equation 4. We observed
no improvement over the SI performance (20.9% word
error-rate). This demonstrates the lack of power in the
component-wise transformation to improve performance for
native speakers. We have previously reported significant
improvement using this approach for non-native speakers [2]
and noisy speech recognition [8].

In the model-space approach, we used the full-matrix
affine transformation of Equation 5. Two different ap-
proaches were used to estimate the matrix. In the first
approach, the matrix transformed the entire gaussian mean
vector corresponding to the cepstrum, delta cepstrum, and
delta-delta cepstrum. In the second approach, a separate
transform was used for the cepstrum, delta-cepstrum, and
delta-delta-cepstrum [4]. Thus the first approach uses a full
matrix whereas the second approach uses a block-diagonal
matrix. This leads to fewer parameters, and hence to more
robust estimation with a limited amount of adaptation data.
We have previously reported on the performance of these
methods in [4]. In this paper we tabulate the results ac-
cording to the number of transformations used for each ap-
proach in Table 1. Recall from Section 2.1 that a separate
transformation is used for each gaussian cluster.

From the table, it can be seen that the model-space ap-
proach significantly reduced the error-rate to 17.6% as com-
pared to the SI error-rate of 20.9%, whereas, as stated
above, the feature-space approach gave no improvement.
We also see that except for the case of two transforma-
tions, the block-diagonal approach is consistently superior
to the full-matrix approach. This can be explained by con-
sidering the effect of the diagonal and off-diagonal blocks.

Number of 2 5 10 20
Transforms
Supervised 18.6 | 18.1 | 17.6 | 18.2

Unsupervised 18.6 | 18.8 | 18.8 | 20.9
CI phone loop

Table 2. Word Error Rates (percent) for Supervised and Un-
supervised (Cl phone loop) Approaches for different number
of transformations

In the block-diagonal approach, the diagonal blocks sepa-
rately transform the cepstrum, delta cepstrum, and delta-
delta cepstrum, and the off-diagonal blocks have no effect.
In the full-matrix case, all blocks in a row affect the trans-
formation of the corresponding feature. Intuitively we ex-
pect the off-diagonal blocks to have lesser importance than
the diagonal blocks. This was also observed by examining
the estimated transformation matrices from the full-matrix
case. For any given number of transformations, the esti-
mation of the block-diagonal transformation is more robust
since it has fewer parameters than the full-matrix transfor-
mation. This explains the better performance of the block-
diagonal approach. However, for the case of only two trans-
formations, it is possible that the estimation of additional
off-diagonal blocks offsets the fact that only two transfor-
mations are used, and hence results in superior performance
for the full-matrix case as compared to the block-diagonal
approach.

The table also shows that as we increase the number
of transformations, the performance of the full-matrix ap-
proach deteriorates whereas the error-rate for the block-
diagonal approach decreases to a minimum of 17.6% at 10
transformations. This can again be explained by the fact
that far more parameters need to be estimated for the full-
matrix case, making it less robust, especially for a larger
number of transformations. In all the following experi-
ments, we used the block-diagonal approach.

Before concluding this section, we observe that the full-
matrix and block-diagonal approaches above are only two
examples of the model-space transformation approach. In
addition to the two methods described above, we have also
used this paradigm to separately transform the variance
and the means of the gaussians in the HMMs [4], and to de-
rive a neural-network-based non-linear transformation ap-
proach [6].

3.2. Supervised vs. Unsupervised Methods

The model-space block-diagonal approach used in Sec-
tion 3.1 was tested in both supervised and unsupervised
modes. For unsupervised adaptation, we used the CI phone
loop described in Equation 9. The error-rates for supervised
and unsupervised adaptation are given in Table 2.

The table shows that as the number of transformations
is increased, the performance of the unsupervised approach
deteriorates. This can be explained by observing that the
unsupervised algorithm makes use of the CI phone loop
for guiding the adaptation as opposed to the correct word
string in the supervised case, resulting in worse alignments
with the HMM models and hence poorer estimates of the
transformation parameters, especially for larger number of



Number of 2 5 10 20
Transforms
Transcription-mode || 18.0 | 18.2 | 18.4 | 19.3
(Recognized string)
Transcription-mode || 18.4 | 18.6 | 19.6 | 20.9
(CI phone loop)
Supervised 18.6 | 18.1 | 17.6 | 18.2
Unsupervised 18.6 | 18.8 | 18.8 | 20.9
CI phone loop

Table 3. Word Error Rates (percent) for Transcription-Mode
adaptation, and comparison to supervised and unsupervised
adaptation

transformations. The best performance of the unsupervised
algorithm (18.6%) is comparable to that of the supervised
method (17.6%). We note that using the recognized word-
string instead of the CI phone loop is likely to improve
performance. Furthermore, unsupervised adaptation can
be run in an iterative fashion, where at each iteration the
newly adapted models are used to recognize the adaptation
data to generate word-strings for the next adaptation iter-
ation. In another experiment on non-native speaker adap-
tation using a 5000 word vocabulary, the SI error-rate was
20.7%, and the supervised and unsupervised performance
was 15.3% and 16.0% respectively. In this experiment, the
unsupervised method used the recognized word-string in-
stead of the CI phone loop to guide the adaptation. This
shows that at operating error-rates of about 20%, it is pos-
sible to use unsupervised algorithms in order to remove the
necessity of speaker enrollment which is required in super-
vised algorithms.

3.3. Transcription-mode vs.
pendent Set

Adapting on Inde-

We carried out transcription mode adaptation on the 10
native speaker data set described above using both the rec-
ognized word-strings (Equation 8) and the CI phone loop
(Equation 9). These results are shown in Table 3. The table
also replicates from Table 2 the results of using supervised
and unsupervised adaptation on an independent dataset.
We point out that while the independent dataset had 40
sentences, the transcription mode adaptation uses on aver-
age 23 sentences per speaker. This works to the detriment
of the latter algorithm.

As with the unsupervised case, both the transcription
mode methods deteriorate as the number of transforma-
tions is increased. This is probably due to the poorer align-
ments as compared to the supervised case as explained in
Section 3.2. However, for two transformations, we see that
the transcription mode adaptation approach is slightly bet-
ter than the supervised technique. This can be explained
by observing that the transcription mode algorithm adapts
on the test data, whereas the supervised method adapts
on an independent dataset. The best performance of the
transcription-mode method (18%) is only slightly worse
than that of the supervised method (17.6%). Transcription-
mode adaptation has applications in such areas as transcrib-
ing tapes of recorded speech, and the results above motivate

further research in this area. It is perhaps possible to ex-
ploit the test data for adaptation to decrease the error-rate
even further. It is also interesting in the context of “self-
adaptation” on a single test sentence.

4. CONCLUSIONS

In this paper, we have presented transformation-based ML
adaptation approaches, and described the effect of the var-
ious parameters of these algorithms. In our experiments
on native American test speakers, model-space adaptation
gave a significant improvement over SI performance, while
feature-space adaptation resulted in no improvement. Fur-
thermore, model-space techniques can be used to explore
a variety of possible adaptation algorithms, and are hence
more flexible than feature-space techniques. We note that
in previously reported results, the feature-space approach
has given us a significant improvement for non-native test
speakers [2] and for noisy speech [8]. We found that unsu-
pervised methods performed almost as well as supervised
approaches at operating error-rates of about 20%. This
shows that we can use unsupervised techniques at these
error-rates to obviate the need for speaker enrollment which
is required in supervised adaptation. Finally, it was found
that transcription-mode methods performed almost as well
as supervised methods, even though the amount of adap-
tation data used for transcription-mode adaptation in our
experiments was less than that for supervised adaptation.
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