From the results ofable 4, we see that:

« When we train using a sample of the testing noise we get
better performance than when we train on multiple car
noises.

and second order derivatives) seems to perform better at
higher SNRS than mapping only the cepstrum and comput-
ing the first and second derivatives on the mapped features.

Condition 1 shows the performance with no compensation,
and how the algorithms help more at higher SNR levels.

1.

3.2.2. Evaluation Test Results

We trained many diérent POF mappings and HM§)’

and selected the appropriate mapping at runtime. Using a ones
minute sample of noise, we trained gendependent POF map- '
pings for many dferent SNR levels. The gender selection was
done using a Bayesian classifier trained with noisy data at a
medium SNR level. The SNR was computed using the average
of the log spectral SNR computed at the output of the filterbank ™
in the signal processing stage. (This produced SNRs higher than
the ones computed in Section 3.1., and is denoted SNR_spec). .

To create the compensation models, the one-minute adap-
tation noise was added to a subset of the WSJ training data con-
sisting of 300 waveforms with a variable scale creating gender6.
and SNR-specific compensation data sets. The 300 waveform
compensation sets were used to train both the mapping and the
adaptation parameters. At low SNR_spec levels (9-24 dB), we7,
used the combined method (POF + Adaptation), and at high
SNR_spec levels (27-33 dB) we used the POF mapping alone.
The results of this test are shown able 5. For the worst condi- 8

Compensation| Clean Levell | Level2 | Level 3
Enabled - 10.1 8.8 12,5 9.
Disabled 7.1 18.7 11.5 35.0

Table 5. V@rd error rates for the 1994 ARfponsored 10.

evaluation on the Spoke 10 test.

tion (Level 3) the ratio of the clean-speech error to the noisy-11.
speech error was reduced roughly from 5 to 2 after applying the
compensation algorithm.
12.
4. SUMMARY

This paper describes how to compensate HMM-based rec-
ognizers in the presence of steady additive noisec@vhpared
performance of compensation algorithms that operate in the fea-
ture and model domains, and experimentally found that both
approaches produced improved results over the baseline condi-
tion. A combination of mapping and adaptation, however
yielded the best results at low SNR levels.

13.
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Figure 1: Wrd error rate vs SNR_wav for various compensation
algorithms.

and adaptation at low SNR_wav levels. For SNR_wav levels

3.2. ARPA-Sponsored Benchmark Test (Spoke 10)
3.2.1. Development Test Results

This section describes the procedure used for the 1994
ARPA-sponsored CSR evaluation spoke 10 test. The test con-
sisted of WSJ data (5,000-word vocabulary) corrupted with addi-
tive noise collected in three thfent cars. The car noise was
recorded in an automobile traveling at 55 m.p.h. with all win-
dows closed and the aonditioning turned on, with an omnidi-
rectional microphone clipped to the drivers’ side sun visor
one-minute sample of noise, preceding the noise segment added
to the speech and scaled to each SNR level, is available for adap-
tation. Three noisy test sets were created using the same clean
utterances and severalfdifent noise levels.

The results on the S10 development test set are shown
below in Table 4. These experiments used a bigram language
model on the male speaker subset (65 sentences) for car #1. The
SNR’s computed by NIST in the below table use an “A” fre-
quency-weighted filter [13] before computing the SNR. Since car

above 15 dB, the POF-only approach produces the best perfornoise contains significant low frequency @ies, applying a fre-

mance.

All the previous experiments assume prior knowledge of
the SNR level of the test data. This is not a serious assumptio

quency weighted filter will shift the SNR levels compared to an
unweighted SNR computation on the waveform (SNR_wav).

since we can always estimate the SNR at run-time and select thg Experimental Condition
compensation models trained at a similar SN&I& 3 shows 1 2 3 4
POF Compensation disabled enabled| enabled enabled
Modéel Test SNR_wav levels [dB] 39-D 13-D 13-D
SNR_wav POF Feature Cep |Cep+CQ Cep+CO
dB 0 3 6 9 12 | 15 | 18 | inf
[dB] POF # Gaussans 100 300 300
0 23.5|21.4|21.7| 24.0 29.2| 36.1| 47.3| 90.6 3 5 5
POF # Frames
3 25.1|20.1| 17.2| 17.2| 19.6| 22.0| 25.7| 71.0
Training Car Noises 123 123 1
6 26.6|20.8| 16.8| 15.0| 15.1| 16.5| 18.2| 45.8 - —
Testing Condition Word |Word |Word |Word
9 28.7|22.0| 17.5| 14.0| 13.2| 12.8| 14.1{ 30.1 (NIST SNR in dB) Error |Error |Error |Error
12 30.7(22.7|18.2| 13.9| 13.5| 12.8| 12.6| 21.9 12 80.6 48.9 475 43.2
15 32.4|23.4|18.7|14.8| 13.2| 12.7|12.7| 17.4 18 53.2 29.8 29.0 26.5
18 36.4|25.1{19.2|16.0| 13.6| 12.4| 12.6| 14.7 24 296 20.7 20.7 18.7
inf 42.6]30.2| 22.2| 18.9| 15.9| 14.5{13.3| 11.1 30 19.0 15.9 18.1 15.8
Table 3. \Wrd error rate at various SNR_wav levels. Columns .
inf 12.8
correspond to the test data SNR_wav and rows correspond to the

Table 4. Vrd error rates for various conditions on the

SNR_wav used to compensate the clean models. v :
development test (car 1) set using a bigram language model.
performance for the combined approach (mapping + adaptation)
for the cases in which the testing SNR level may not match the The second line inable 4 refers to what feature was used
compensation SNR level. This experiment shows that a precisdy the mapping. The # Gaussians and the # Frames are both
estimate of the SNR is not necessary since performance seems firameters of the POF mapping algorithm. The fifth lineaislel
degrade slowly as the mismatch between the model SNR and thé indicates which car noises the algorithms were trained on:
test data SNR increases. experiments 2 & 3 trained on all 3 car noises (which includes
) ] noise from the same car as the development test set), while
In summary front-end mapping and HMM adaptation can  gyneriment 4 only trains on a sample of noise collected from the

be combined to improve performance in a noisy channel at lowdevelopment test set cdthe word-error rate’are computed for
SNR_wav levels. These conclusions are applied in the following ¢ 5ch condition as a function of the A-weighted SNR.

section.



2.2. Model Adaptation same 8 minute sample of noise for training and testingrdate
) _a noisy sentence (approximately 10 seconds of speech), we
In the feature-mapping approach clean features are estisglected a continuous block of noise from the long noise record-
mated and the HMMs remain unchanged. In model adaptation,ng at random. This block of noise was scaled to achieve a given
however the opposite occurs: the noisy feature vectors aregNR level and added to the speech data. For these experiments,
unchanged and the HMMs are adapted using a sample of thge computed the SNR on the unfiltered waveform, and designate

noisy speech data and its orthographic transcription. this as SNR wav
_ Adaptation of the HMMs is implemented using a con- Our main goal in this set of experiments was to compare
strained estimation of the Gaussian mixture.[In this algo-  the performance of the three proposed algorithms described in

rithm, we estimate a set offiaie transformations that are applied - gection 2. Howeveto have a lower bound in the word error rate
to the Gaussian distributions. The transformations can be eithegnger noisy conditions, we also trained the genonic HMM recog-

unique for éach mixture of Gaussians or shared lfgrdiit mix-  nizer from scratch using noisy training data at an SNR_wav of 6
tures. The total number of transformations is determined experi-4g Therefore, we have two baseline recognizers, one based on
mentally based on the amount of adaptation data. “clean” HMMs and the other with “noisy” HMMs. The training

As in the mapping approach, the compensation set can b&lata set consisted of 18,000 WSJ sentences from 170 male
constructed using a variety of speakers and noisesciiieve ~ SPeakers. A compensation set was created using a subset of 300
good performance, howevehe characteristics of the noise and Sentences from the training set. The test set consisted of 90 sen-
the SNR in the adaptation set have to match the test conditions. tences from 4 speakers.

2.3. Combination of Mapping and Adaptation Table 1 compares the performance for these systems.
These results show that word error rate degrades ftoh§4lfor

The third approach adapts the HMMs using the mappedthe clean/clean condition to 15.5% for the noisy/noisy condition.
feature vectors. In this algorithm, the feature mapping transformsThese baseline numbers will be used as a reference for the com-
the noisy features to make them look like the clean features.pensation algorithms.

Then, the HMMs are adapted to these mapped noisy features.
Finally, at runtime, the POF mapping is applied to the noisy fea-
tures and these features are recognized with the adapted HMMs.

Test Clean |Test Noisy

This approach might be particularly applicable at low Train Clean 11 222

SNRs where the mapped features may be significantly distorted, Train Noisy 40.4 15.5
and the adaptation algorithm is not able to compensate the mOd"I’able 1. Baseline word error rate in percent for clean and noisy
els in the cepstral domain because of the highly nonlinear distor- conditions. The SNR_wav of the noisy data is 6 dB
tion introduced by the additive noise. ' - '

Table 2 compares the performance of the three compensa-

3. EXPERIMENTS tion algorithms described in Section 2 and the baseline results.

Section 3.1 compares the PQRke HMM adaptation, and

the combined approach for various SNR levels. Section 3.2 sUM{ Ty 3in Test Error Rate (%)

marizes the procedure used for the 1994 ARPonsored

benchmark tests on noisy channels. Clean Clean 1.1

3.1. Comparison of Compensation Techniques Noisy Noisy 15.5
We evaluated the noise compensation algorithms on the|C€an Noisy 222

large vocabulary \MI Street Journal (WSJ) corpus [12]. The |clean Noisy+POF 18.2

experiments were carried out using SRVECIPHER™ speech : -

recognition system [1-3] configured with a six-feature front end: |Clean + Adaptation | Noisy 201

12 cepstral coéitients, cepstral engy, and their first- and sec- Clean + Adaptation |Noisy + POF 16.8

ond-order diferences. W used genonic HMMs, as described in
[1]; for rapid experimentation, we constrained the search using
the Progressive Searckdhnique described in [2]. In the current
section (Section 3.1) we used lattices created on the clean test set o

(before adding the noise) to constraint the recognition searchYVe found that the error rate for mapping is 18.2% and for adap-
resulting in optimistic results. In the following section (Section tation is 20.1%. In both cases we optimized each technique to

3.2), we use a full search decadesulting in real error rates. maximize performance. For the combined approach, we found
that adapting the HMM' to the mapped features reduced the

The noisy data were created artificially in the lab by adding error rate to 16.8%, only 8.4% ((16.8 - 15.5) / 15.5) worse than
the scaled noise to the speech data. Eight minutes of car noisge full training in noise condition. Figure 1, which illustrates
were recorded on a 1985 Honda Civic Statiagdh traveling at  how the compensation algorithms perform at various SNRSs,
a steady speed of 55 m.p.h. with its windows closexlu¥¢d the  clearly shows how the combined approach outperforms mapping

Table 2. \Wrd error for baseline conditions and compensation
algorithms. The SNR_wav of the noisy data is 6 dB.



ROBUST SPEECH RECOGNITION IN NOISE USING
ADAPTATION AND MAPPING TECHNIQUES

Leonardo Neumeyer and Mitchel Weintraub

SRI International
Speech &chnology and Research Laboratory
Menlo Park, CA, 94025, USA

ABSTRACT ple of the noise is available, just by adding the noise to the clean

) ) o ~ speech.
This paper compares three techniques for recognizing continu-

ous speech in the presence of additive car noise: 1) transforming ~ One approach to make the statistical modeling robust to
the noisy acoustic features using a mapping algorithm, 2) adapta@dditive noise is Parallel Model Combination (PMC) [9]. PMC is
tion of the Hidden Markov Models (HMMs), and 3) combination used to adapt the HMM parameters in a very simple fedtefe

of mapping and adaptation.e/éhow that at low signal-to-noise manner and it has also been shown [10] that integrating PMC
ratio (SNR) levels, compensating in the feature and modelWith a continuous spectral subtraction in the front end is benefi-
domains yields similar performancee\llso show that adapting ~ cial at low SNRs.

the HMMs with the mapped features produces the best perfor- Our approach to robust statistical modeling is to use a

mance. The algorithms were implemented using SRECI- model adaptation technique described ib][In this case, we
PHER™ speech recognition system [1-3] and were tested on the, ., o set of gihe transformations to the Gaussian mixtures of
1994 ARR-sponsored CSR evaluation test spoke 10 [4]. the HMMs. Unlike POFstereo data are not needed to estimate
the adaptation parameters. The clean HMMs are adapted using
an orthographically transcribed adaptation set that matches the

1. INTRODUCTION

There are several approaches that one can use to recogniZ¥isy conditions.
speech in the presence of additive background noise. The algo- Finally, we investigate how both techniques (mapping and
rithms that we present here attempt to make each of the majoédaptation) perform when they are used togetfieat is, we
components robust to additive noise: (a) the front-end signal prosphance the noisy features using POF followed by the adaptation
cessing and (b) the statistical modeling. stage. In fact, at low SNRs this technique produces the best per-

To make the signal processing robust to additive noise, weformance.
apply a technique calleérobabilistic Optimum Filtering (POF)
[5]. We have previously showed how this algorithm can be used 2. COMPENSATION TECHNIQUES
tolrecog.nize narrowband speech recorded over the telephongl_ Feature Mapping
using wideband HMMs, and how to map speech features
obtained from a boom desktop microphone to features generated The POF mapping algorithm is designed to estimate a
from a close talking microphone. In summaour focus in clean feature vector by applying a set of weightédeafransfor-
developing POF was the problem of channel mismatchesmations to the noisy feature vectors [5b @&stimate the POF
between training and testing conditions. transformation parameters, we need a stereo compensation set

The class of feature-transformation approaches have beer\]/vith simultaneous sequences of the clean and noisy feature vec-
PP tors. The stereo data is created by adding noise to the clean data
used successfully by other researchers [6,7] to compensate fi

of, . - . . .
. . . 0 obtain noisy data. The question arises as to what noise to add
speech corrupted with additive noisee Wxtend these tech- Y d

- ; . L ) to the clean spee@nd how the transformation parameters are
niques by using _the POF technique and c_o_mblne I Wlth the Ideasaffected by the properties of the noise (spectrum and level).
in our earlier noise-robust work [8]. Specificallye train many

different POF filters for diérent conditions (e.g. ddrent back- Th_ree possible gpproaches are to. (1) add mafereit types of .
ground noise, diérent SNR levels). At runtime, we automati- noise to the training da.t"?‘ and .traln a geperal mapping that il
cally select the most appropriate model apply to all types of additive noise, (2) train manyed#nt map-
' pings for diferent noise spectra and SMRand select the best

The POF model does not use any assumption about thenodel at runtime, and (3) obtain a sample of the actual noise
underlying physical phenomena that corrupted the signal. How-encountered in the field and build a specific mapping for these
ever it requires stereo recordings of the clean and noisy speecigonditions at runtime.
to estimate its parameters. In the case of additive noise, it is
straightforward to build an artificial stereo database when a sam-



