
From the results of Table 4, we see that:

• When we train using a sample of the testing noise we get
better performance than when we train on multiple car
noises.

• Mapping the full 39-dimensional cepstral vector (cep + first
and second order derivatives) seems to perform better at
higher SNR’s than mapping only the cepstrum and comput-
ing the first and second derivatives on the mapped features.

• Condition 1 shows the performance with no compensation,
and how the algorithms help more at higher SNR levels.

3.2.2. Evaluation Test Results

We trained many different POF mappings and HMM’s,
and selected the appropriate mapping at runtime. Using a one-
minute sample of noise, we trained gender-dependent POF map-
pings for many different SNR levels. The gender selection was
done using a Bayesian classifier trained with noisy data at a
medium SNR level. The SNR was computed using the average
of the log spectral SNR computed at the output of the filterbank
in the signal processing stage. (This produced SNRs higher than
the ones computed in Section 3.1., and is denoted SNR_spec).

To create the compensation models, the one-minute adap-
tation noise was added to a subset of the WSJ training data con-
sisting of 300 waveforms with a variable scale creating gender
and SNR-specific compensation data sets. The 300 waveform
compensation sets were used to train both the mapping and the
adaptation parameters. At low SNR_spec levels (9-24 dB), we
used the combined method (POF + Adaptation), and at high
SNR_spec levels (27-33 dB) we used the POF mapping alone.
The results of this test are shown in Table 5. For the worst condi-

tion (Level 3) the ratio of the clean-speech error to the noisy-
speech error was reduced roughly from 5 to 2 after applying the
compensation algorithm.

4. SUMMARY

This paper describes how to compensate HMM-based rec-
ognizers in the presence of steady additive noise. We compared
performance of compensation algorithms that operate in the fea-
ture and model domains, and experimentally found that both
approaches produced improved results over the baseline condi-
tion. A combination of mapping and adaptation, however,
yielded the best results at low SNR levels.

Compensation Clean Level 1 Level 2 Level 3

Enabled - 10.1 8.8 12.5

Disabled 7.1 18.7 11.5 35.0

Table 5. Word error rates for the 1994 ARPA-sponsored
evaluation on the Spoke 10 test.

ACKNOWLEDGMENTS

This research was partially supported by a grant, NSF IRI-
9014829, from the National Science Foundation and by the
Advanced Research Projects Agency through Office of Naval
Research Contracts ONR N00014-92-C-0154.

REFERENCES

1. V. Digalakis and H. Murveit, “GENONES: Optimizing the
Degree of Mixture Tying in a Large Vocabulary Hidden
Markov Model Based Speech Recognizer,” 1994 IEEE
ICASSP, pp. I537-I540.

2. H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub,
“Large-Vocabulary Dictation Using SRI’s DECIPHER
Speech Recognition System: Progressive Search Tech-
niques,” 1993 IEEE ICASSP, pp. II319-II322.

3. H. Murveit, J. Butzberger, and M. Weintraub, “Performance
of SRI’s DECIPHER™ Speech Recognition System on
DARPA’s CSR Task,” 1992 DARPA Speech and Natural
Language Workshop Proceedings, pp. 410-414.

4. Linguistic Data Consortium, “ARPA Spoken Language Sys-
tems November 1994 CSR Hub and Spoke Benchmark Test
Material,” LDC CDROM Disk T8-1.1, file: ./et94spec.doc.

5. L. Neumeyer and M. Weintraub, “Probabilistic Optimum
Filtering for Robust Speech Recognition,” 1994 IEEE
ICASSP, pp. I417-I420.

6. H. Gish, Y.L. Chow, and J.R. Rohlicek, “Probabilistic Vector
Mapping of Noisy Speech Parameters for HMM Word Spot-
ting,” 1990 IEEE ICASSP, pp. 117-120.

7. A. Acero, “Acoustical and Environmental Robustness in
Automatic Speech Recognition,” Ph.D. Thesis, Carnegie-
Mellon University, September 1990.

8. A. Erell and M. Weintraub, “Filterbank-Energy Estimation
Using Mixture and Markov Models for Recognition of Noisy
Speech,” 1993 IEEE ASSP, vol. 1, no. 1, pp. 68-76.

9. M.J.F. Gales and S.J. Young, “HMM Recognition in Noise
using Parallel Model Combination,” 1993 Eurospeech, pp.
837-840.

10. J.A. Nolazco Flores and S.J. Young, “Continuous Speech
Recognition in Noise using Spectral Subtraction and HMM
Adaptation,” 1994 IEEE ICASSP, pp. I409-I412.

11. V. Digalakis and L. Neumeyer, “Speaker Adaptation Using
Combined Transformation and Bayesian Methods,” submit-
ted to 1995 IEEE ICASSP.

12. G. Doddington, “CSR Corpus Development,” 1992 DARPA
SLS Workshop, pp. 363-366.

13. K.D. Kryter, “The Effects of Noise on Man,” 1985 Academic
Press.



and adaptation at low SNR_wav levels. For SNR_wav levels
above 15 dB, the POF-only approach produces the best perfor-
mance.

All the previous experiments assume prior knowledge of
the SNR level of the test data. This is not a serious assumption
since we can always estimate the SNR at run-time and select the
compensation models trained at a similar SNR. Table 3 shows

performance for the combined approach (mapping + adaptation)
for the cases in which the testing SNR level may not match the
compensation SNR level. This experiment shows that a precise
estimate of the SNR is not necessary since performance seems to
degrade slowly as the mismatch between the model SNR and the
test data SNR increases.

In summary, front-end mapping and HMM adaptation can
be combined to improve performance in a noisy channel at low
SNR_wav levels. These conclusions are applied in the following
section.

Figure 1: Word error rate vs SNR_wav for various compensation
algorithms.

Model
SNR_wav

 [dB]

Test SNR_wav levels [dB]

0 3 6 9 12 15 18 inf

0 23.5 21.4 21.7 24.0 29.2 36.1 47.3 90.6

3 25.1 20.1 17.2 17.2 19.6 22.0 25.7 71.0

6 26.6 20.8 16.8 15.0 15.1 16.5 18.2 45.8

9 28.7 22.0 17.5 14.0 13.2 12.8 14.1 30.1

12 30.7 22.7 18.2 13.9 13.5 12.8 12.6 21.9

15 32.4 23.4 18.7 14.8 13.2 12.7 12.7 17.4

18 36.4 25.1 19.2 16.0 13.6 12.4 12.6 14.7

inf 42.6 30.2 22.2 18.9 15.9 14.5 13.3 11.1

Table 3. Word error rate at various SNR_wav levels. Columns
correspond to the test data SNR_wav and rows correspond to the

SNR_wav used to compensate the clean models.

0 2 4 6 8 10 12 14 16 18
10

15

20

25

30

35

40

45

SNR [dB]

W
or

d 
er

ro
r r

at
e 

[%
]

x: no compensation

o: POF

*: adaptation

+: POF + adaptation

0 2 4 6 8 10 12 14 16 18
10

15

20

25

30

35

40

45

SNR [dB]

W
or

d 
er

ro
r r

at
e 

[%
]

x: no compensation

o: POF

*: adaptation

+: POF + adaptation

3.2. ARPA-Sponsored Benchmark Test (Spoke 10)

3.2.1. Development Test Results

This section describes the procedure used for the 1994
ARPA-sponsored CSR evaluation spoke 10 test. The test con-
sisted of WSJ data (5,000-word vocabulary) corrupted with addi-
tive noise collected in three different cars. The car noise was
recorded in an automobile traveling at 55 m.p.h. with all win-
dows closed and the air-conditioning turned on, with an omnidi-
rectional microphone clipped to the drivers’ side sun visor. A
one-minute sample of noise, preceding the noise segment added
to the speech and scaled to each SNR level, is available for adap-
tation. Three noisy test sets were created using the same clean
utterances and several different noise levels.

The results on the S10 development test set are shown
below in Table 4. These experiments used a bigram language
model on the male speaker subset (65 sentences) for car #1. The
SNR’s computed by NIST in the below table use an “A” fre-
quency-weighted filter [13] before computing the SNR. Since car
noise contains significant low frequency energies, applying a fre-
quency weighted filter will shift the SNR levels compared to an
unweighted SNR computation on the waveform (SNR_wav).

The second line in Table 4 refers to what feature was used
by the mapping. The # Gaussians and the # Frames are both
parameters of the POF mapping algorithm. The fifth line in Table
4 indicates which car noises the algorithms were trained on:
experiments 2 & 3 trained on all 3 car noises (which includes
noise from the same car as the development test set), while
experiment 4 only trains on a sample of noise collected from the
development test set car. The word-error rate’s are computed for
each condition as a function of the A-weighted SNR.

Experimental Condition

1 2 3 4

POF Compensation disabled enabled enabled enabled

POF Feature
39-D
Cep

13-D
Cep+C0

13-D
Cep+C0

POF # Gaussians 100 300 300

POF # Frames 3 5 5

Training Car Noises 1,2,3 1,2,3 1

Testing Condition
(NIST SNR in dB)

Word
Error

Word
Error

Word
Error

Word
Error

12 80.6 48.9 47.5 43.2

18 53.2 29.8 29.0 26.5

24 29.6 20.7 20.7 18.7

30 19.0 15.9 18.1 15.8

inf 12.8

Table 4. Word error rates for various conditions on the
development test (car 1) set using a bigram language model.



2.2. Model Adaptation

In the feature-mapping approach clean features are esti-
mated and the HMMs remain unchanged. In model adaptation,
however, the opposite occurs: the noisy feature vectors are
unchanged and the HMMs are adapted using a sample of the
noisy speech data and its orthographic transcription.

Adaptation of the HMMs is implemented using a con-
strained estimation of the Gaussian mixtures [11]. In this algo-
rithm, we estimate a set of affine transformations that are applied
to the Gaussian distributions. The transformations can be either
unique for each mixture of Gaussians or shared by different mix-
tures. The total number of transformations is determined experi-
mentally based on the amount of adaptation data.

As in the mapping approach, the compensation set can be
constructed using a variety of speakers and noises. To achieve
good performance, however, the characteristics of the noise and
the SNR in the adaptation set have to match the test conditions.

2.3. Combination of Mapping and Adaptation

The third approach adapts the HMMs using the mapped
feature vectors. In this algorithm, the feature mapping transforms
the noisy features to make them look like the clean features.
Then, the HMMs are adapted to these mapped noisy features.
Finally, at runtime, the POF mapping is applied to the noisy fea-
tures and these features are recognized with the adapted HMMs.

This approach might be particularly applicable at low
SNRs where the mapped features may be significantly distorted,
and the adaptation algorithm is not able to compensate the mod-
els in the cepstral domain because of the highly nonlinear distor-
tion introduced by the additive noise.

3. EXPERIMENTS

Section 3.1 compares the POF, the HMM adaptation, and
the combined approach for various SNR levels. Section 3.2 sum-
marizes the procedure used for the 1994 ARPA-sponsored
benchmark tests on noisy channels.

3.1. Comparison of Compensation Techniques

We evaluated the noise compensation algorithms on the
large vocabulary Wall Street Journal (WSJ) corpus [12]. The
experiments were carried out using SRI’s DECIPHER™ speech
recognition system [1-3] configured with a six-feature front end:
12 cepstral coefficients, cepstral energy, and their first- and sec-
ond-order differences. We used genonic HMMs, as described in
[1]; for rapid experimentation, we constrained the search using
the Progressive Search Technique described in [2]. In the current
section (Section 3.1) we used lattices created on the clean test set
(before adding the noise) to constraint the recognition search,
resulting in optimistic results. In the following section (Section
3.2), we use a full search decoder, resulting in real error rates.

The noisy data were created artificially in the lab by adding
the scaled noise to the speech data. Eight minutes of car noise
were recorded on a 1985 Honda Civic Station Wagon traveling at
a steady speed of 55 m.p.h. with its windows closed. We used the

same 8 minute sample of noise for training and testing. To create
a noisy sentence (approximately 10 seconds of speech), we
selected a continuous block of noise from the long noise record-
ing at random. This block of noise was scaled to achieve a given
SNR level and added to the speech data. For these experiments,
we computed the SNR on the unfiltered waveform, and designate
this as SNR_wav.

Our main goal in this set of experiments was to compare
the performance of the three proposed algorithms described in
Section 2. However, to have a lower bound in the word error rate
under noisy conditions, we also trained the genonic HMM recog-
nizer from scratch using noisy training data at an SNR_wav of 6
dB. Therefore, we have two baseline recognizers, one based on
“clean” HMMs and the other with “noisy” HMMs. The training
data set consisted of 18,000 WSJ sentences from 170 male
speakers. A compensation set was created using a subset of 300
sentences from the training set. The test set consisted of 90 sen-
tences from 4 speakers.

Table 1 compares the performance for these systems.
These results show that word error rate degrades from 11.1% for
the clean/clean condition to 15.5% for the noisy/noisy condition.
These baseline numbers will be used as a reference for the com-
pensation algorithms.

Table 2 compares the performance of the three compensa-
tion algorithms described in Section 2 and the baseline results.

We found that the error rate for mapping is 18.2% and for adap-
tation is 20.1%. In both cases we optimized each technique to
maximize performance. For the combined approach, we found
that adapting the HMM’s to the mapped features reduced the
error rate to 16.8%, only 8.4% ((16.8 - 15.5) / 15.5) worse than
the full training in noise condition. Figure 1, which illustrates
how the compensation algorithms perform at various SNRs,
clearly shows how the combined approach outperforms mapping

Test Clean Test Noisy

Train Clean 11.1 22.2

Train Noisy 40.4 15.5

Table 1. Baseline word error rate in percent for clean and noisy
conditions. The SNR_wav of the noisy data is 6 dB.

Train Test Error Rate (%)

Clean Clean 11.1

Noisy Noisy 15.5

Clean Noisy 22.2

Clean Noisy+POF 18.2

Clean + Adaptation Noisy 20.1

Clean + Adaptation Noisy + POF 16.8

Table 2. Word error for baseline conditions and compensation
algorithms. The SNR_wav of the noisy data is 6 dB.



ABSTRACT

This paper compares three techniques for recognizing continu-
ous speech in the presence of additive car noise: 1) transforming
the noisy acoustic features using a mapping algorithm, 2) adapta-
tion of the Hidden Markov Models (HMMs), and 3) combination
of mapping and adaptation. We show that at low signal-to-noise
ratio (SNR) levels, compensating in the feature and model
domains yields similar performance. We also show that adapting
the HMMs with the mapped features produces the best perfor-
mance. The algorithms were implemented using SRI’s DECI-
PHER™ speech recognition system [1-3] and were tested on the
1994 ARPA-sponsored CSR evaluation test spoke 10 [4].

1. INTRODUCTION

There are several approaches that one can use to recognize
speech in the presence of additive background noise. The algo-
rithms that we present here attempt to make each of the major
components robust to additive noise: (a) the front-end signal pro-
cessing and (b) the statistical modeling.

To make the signal processing robust to additive noise, we
apply a technique calledProbabilistic Optimum Filtering (POF)
[5]. We have previously showed how this algorithm can be used
to recognize narrowband speech recorded over the telephone
using wideband HMMs, and how to map speech features
obtained from a boom desktop microphone to features generated
from a close talking microphone. In summary, our focus in
developing POF was the problem of channel mismatches
between training and testing conditions.

The class of feature-transformation approaches have been
used successfully by other researchers [6,7] to compensate for
speech corrupted with additive noise. We extend these tech-
niques by using the POF technique and combine it with the ideas
in our earlier noise-robust work [8]. Specifically, we train many
different POF filters for different conditions (e.g. different back-
ground noise, different SNR levels). At runtime, we automati-
cally select the most appropriate model.

The POF model does not use any assumption about the
underlying physical phenomena that corrupted the signal. How-
ever, it requires stereo recordings of the clean and noisy speech
to estimate its parameters. In the case of additive noise, it is
straightforward to build an artificial stereo database when a sam-

ple of the noise is available, just by adding the noise to the clean
speech.

One approach to make the statistical modeling robust to
additive noise is Parallel Model Combination (PMC) [9]. PMC is
used to adapt the HMM parameters in a very simple but effective
manner and it has also been shown [10] that integrating PMC
with a continuous spectral subtraction in the front end is benefi-
cial at low SNRs.

Our approach to robust statistical modeling is to use a
model adaptation technique described in [11]. In this case, we
apply a set of affine transformations to the Gaussian mixtures of
the HMMs. Unlike POF, stereo data are not needed to estimate
the adaptation parameters. The clean HMMs are adapted using
an orthographically transcribed adaptation set that matches the
noisy conditions.

Finally, we investigate how both techniques (mapping and
adaptation) perform when they are used together. That is, we
enhance the noisy features using POF followed by the adaptation
stage. In fact, at low SNRs this technique produces the best per-
formance.

2. COMPENSATION TECHNIQUES

2.1. Feature Mapping

The POF mapping algorithm is designed to estimate a
clean feature vector by applying a set of weighted affine transfor-
mations to the noisy feature vectors [5]. To estimate the POF
transformation parameters, we need a stereo compensation set
with simultaneous sequences of the clean and noisy feature vec-
tors. The stereo data is created by adding noise to the clean data
to obtain noisy data. The question arises as to what noise to add
to the clean speechand how the transformation parameters are
affected by the properties of the noise (spectrum and level).
Three possible approaches are to (1) add many different types of
noise to the training data and train a general mapping that will
apply to all types of additive noise, (2) train many different map-
pings for different noise spectra and SNR’s, and select the best
model at runtime, and (3) obtain a sample of the actual noise
encountered in the field and build a specific mapping for these
conditions at runtime.
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