
ABSTRACT

The performance and robustness of a speech recognition system
can be improved by adapting the speech models to the speaker,
the channel and the task. In continuous mixture-density hidden
Markov models the number of component densities is typically
very large, and it may not be feasible to acquire a large amount
of adaptation data for robust maximum-likelihood estimates. To
solve this problem, we propose a constrained estimation tech-
nique for Gaussian mixture densities, and combine it with Baye-
sian techniques to improve its asymptotic properties. We evaluate
our algorithms on the large-vocabulary Wall Street Journal cor-
pus for nonnative speakers of American English. The recognition
error rate is comparable to the speaker-independent accuracy
achieved for native speakers.

1. INTRODUCTION

Two families of adaptation schemes have been proposed in
the past. One transforms the speaker’s feature space to “match”
the space of the training population [1],[2],[3]. The transforma-
tion can be applied either directly to the features, or to the speech
models [4]. This approach has the advantage of simplicity and, if
the number of free parameters is small, then transformation tech-
niques adapt to the user with only a small amount of adaptation
speech (quick adaptation). Disadvantages of transformation
methods are that they are usually text-dependent and that they
may not take full advantage of large amounts of adaptation data.
The second main family of adaptation algorithms follows a
Bayesian approach, where the speaker-independent information
is encapsulated in the prior distributions [5][6]. The Bayesian
approach is text-independent, and has nice asymptotic proper-
ties: speaker-adaptive performance will converge to speaker-
dependent performance as the amount of adaptation speech
increases. However, the adaptation rate is usually slow.

In this paper we present adaptation schemes that combine
the quick adaptation characteristics of transformation-based
methods with the nice asymptotic properties of Bayesian meth-
ods. We first introduce a transformation-based method for con-
tinuous mixture-density hidden Markov models (HMMs).
Adaptation is achieved via a transformation of the speaker-inde-
pendent observation densities, and the transformation parameters
are obtained using the maximum-likelihood (ML) criterion. The
number of transformation parameters can be adjusted to achieve
quick adaptation. We will then show how this algorithm can be

combined with Bayesian techniques. The combined method
adapts to a new speaker with small amounts of adaptation data,
but also has nice asymptotic properties and takes full advantage
of large amounts of adaptation data.

2. TRANFORMATION-BASED ADAPTATION

Transformation-based approaches to speaker adaptation
are typically text-dependent and require the new speaker to
record some predetermined sentences. These utterances are
aligned to ones recorded by reference speakers, and mappings
between the new-speaker and the reference-speaker acoustic
spaces are obtained using regression techniques [2][3].

We have developed a novel transformation-based approach
to speaker adaptation for continuous mixture-density HMMs [7].
We apply the transformation at the distribution level, instead of
transforming the feature vectors directly, since we can then use
the expectation-maximization (EM) algorithm [8] to estimate the
transformation parameters by maximizing the likelihood of the
adaptation data. Using this approach, we are not required to
time-align the new- and reference-speaker data, and the transfor-
mation parameters can be estimated using new-speaker data
alone. Our scheme can also be viewed as a constrained estima-
tion of Gaussian mixtures, since we apply the same transforma-
tion to all the components of a particular mixture (or a group of
mixtures, if there is tying of transformations) instead of indepen-
dently reestimating them. It achieves quick adaptation by adapt-
ing Gaussians for which there were no observations in the
training data, based on data that were most likely generated by
other Gaussians of the same or neighboring mixtures.

Specifically, we assume that the speaker-independent (SI)
HMM model for the SI vector process  has observation den-
sities of the form

, (1)

whereg is the index of the Gaussian codebook used by statest.
Adaptation of this system can be achieved by jointly transform-
ing all the Gaussians of each mixture. We assume that, given the
HMM state index , the speaker-dependent vector process
can be obtained by an underlying process  through the
transformation
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. (2)

Under this assumption, the speaker-adapted (SA) observa-
tion densities will have the form

(3)

and only the parameters  need to be esti-
mated during adaptation, whereNg is the number of distinct
transformations. The same transformations can be applied to
differentHMM states, and this tying of transformations can be
used to optimize performance based on the amount of available
adaptation data. The transformation parameters can be estimated
using the EM algorithm. The reestimation formulae are derived
in [7] and are summarized below:

1. Initialize all transformations with
. Setk=0.

2. E-step: Perform one iteration of the forward-backward algo-
rithm on the speech data, using Gaussians transformed with
the current value of the transformations . For
all component Gaussians and all mixturesg, collect the suffi-
cient statistics

(4)

where  is the probability of being at statest at timet
given the current HMM parameters, the summation is over
all times and HMM states that share the same mixture com-
ponents, and  is the posterior probability

. (5)

3. M-step: Compute the new transformation parameters. Under
the assumption of diagonal covariance and transformation
matrices, the elementsa andb of
can be obtained by solving the following equations for eachg

(6)

where for simplicity we have dropped the dependence ong.
The variables  are elements of the vectors
and diagonal matrices , respectively.

4. If the convergence criterion is not met, go to step 2.

Once the transformation parameters are determined, the
constrained ML estimates for the means and covariances can be
obtained using

. (7)

3. COMBINED TRANSFORMATION AND
BAYESIAN-BASED ADAPTATION

In Bayesian adaptation techniques the limited amount of
adaptation data is optimally combined with the prior knowledge.
With the appropriate choice of the prior distributions, the maxi-
mum a posteriori (MAP) estimates for the means and covari-
ances of HMMs with Gaussian observation densities can be
obtained using linear combinations of the speaker-dependent suf-
ficient statistics (counts) and some quantities that depend on the
parameters of the prior distributions [5][6]. Based on the reesti-
mation formulae for the MAP estimates of the means and covari-
ances of HMM with continuous mixture densities that are
derived in [6], a simplified version of Bayesian estimation can be
implemented by linearly combining the speaker-independent and
the speaker-dependent counts for each component density

, (8)

where the superscripts denote the data over which the following
statistics are collected during one iteration of the forward-back-
ward algorithm

. (9)

We will refer to this method as approximate Bayesian adaptation.
The weight  controls the adaptation rate. Using the combined
counts, we can compute the approximate MAP (AMAP) esti-
mates of the means and covariances of each Gaussian component
density from

. (10)
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Similar adaptation schemes have also appeared for discrete
HMMs [9], and can be used to adapt the mixture weights in the
approximate Bayesian scheme described here.

In Bayesian adaptation schemes, only the Gaussians of the
speaker-independent models that are most likely to have gener-
ated some of the adaptation data will be adapted to the speaker.
These Gaussians may represent only a small fraction of the total
number in continuous HMMs with a large number of Gaussians.
On the other hand, as the amount of adaptation data increases,
the speaker-dependent statistics will dominate the speaker-inde-
pendent priors and Bayesian techniques will approach speaker-
dependent performance. We should, therefore, aim for an adapta-
tion scheme that retains the nice properties of Bayesian schemes
for large amounts of adaptation data, and has improved perfor-
mance for small amounts of adaptation data. We can achieve this
by using our transformation-based adaptation as a preprocessing
step to transform the speaker-independent models so that they
better match the new speaker characteristics and improve the
prior information in MAP estimation schemes. In the approxi-
mate Bayesian adaptation, this can be accomplished by first
transforming the speaker-independent counts using the method
described in Section 2 and then combining them with the
speaker-dependent counts collected using the adaptation data.

4. EXPERIMENTAL RESULTS

We evaluated our adaptation algorithms on the “spoke 3”
task of the phase-1, large-vocabulary Wall Street Journal (WSJ)
corpus [10], trying to improve recognition performance for non-
native speakers of American English. Experiments were carried
out using SRI’s DECIPHERTM speech recognition system con-
figured with a six-feature front end that outputs 12 cepstral coef-
ficients, cepstral energy, and their first- and second-order
differences. The cepstral features are computed from a fast Fou-
rier transform (FFT) filterbank, and subsequent cepstral-mean
normalization on a sentence basis is performed. We used genonic
hidden Markov models with an arbitrary degree of Gaussian
sharing across different HMM states as described in [11]. The
speaker-independent continuous HMM systems that we used as
seed models for adaptation were gender-dependent, trained on
140 speakers and 17,000 sentences for each gender. Each of the
two systems had 12,000 context-dependent phonetic models that
shared 500 Gaussian codebooks with 32 Gaussian components
per codebook. For fast experimentation, we used the progressive
search framework [12]: an initial, speaker-independent recog-
nizer with a bigram language model outputs word lattices for all
the utterances in the test set. These word lattices are then res-
cored using speaker-adapted models. We used the baseline
5,000-word, closed-vocabulary bigram and trigram language
models provided by the MIT Lincoln Laboratory. The trigram
language model was implemented using the N-best rescoring
paradigm, by rescoring the list of the N-best sentence hypotheses
generated using the bigram language model.

In the first series of experiments we used the bigram lan-
guage model. We first evaluated the performance of the transfor-
mation-based adaptation for various numbers of transformations
and amounts of adaptation data. As we can see in Figure 1,

where we have plotted the word error rate as a function of the
number of adaptation sentences, multiple transformations out-
perform very constrained schemes that use 1 or 2 transforma-
tions. The performance with 20 and 40 transformations is
similar, and is better than the less constrained case of 160 trans-
formations. However, as the amount of adaptation data increases,
the 160 transformations take advantage of the additional data and
outperform the more constrained schemes. A significant decrease
in error rate is obtained with as few as 5 adaptation sentences.
When adapting using a single sentence, the performance is simi-
lar for different numbers of transformations, except for the case
of 2 transformations. The reason is that in our implementation a
transformation is reestimated only if the number of observations
is larger than a threshold; otherwise, we use a global transforma-
tion estimated from all data. Since most of the transformations
are backed off to the global transformation for the case of a sin-
gle adaptation sentence, the cases with different numbers of
transformations exhibit similar performance.

In Figure 2 we compare the word error rates of the trans-
formation-only method with 20 and 160 transformations, the
approximate Bayesian method with conventional priors, and the
combined method for various amounts of adaptation data. In the
latter, the number of transformations was optimized according to
the available amount of adaptation data. The transformation-only
method with 20 transformations outperforms the Bayesian
scheme with conventional priors when fewer than 10 sentences
are used for adaptation, whereas the situation reverses as more
adaptation sentences are used. This is consistent with our claim
that transformation-based methods adapt faster, whereas Baye-
sian schemes have better asymptotic properties. The performance
of the transformation approach for large amounts of adaptation
data can be improved by increasing the number of transforma-
tions. We can also see in the same figure the success of the com-
bined method, which significantly outperforms the first two
methods over the whole range of adaptation sentences that we

Figure 1: Word error rates for various numbers of
transformations for the transformation-based adaptation
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examined. The transformation step provides quick adaptation
when few adaptation sentences are used, and the Bayesian reesti-
mation step improves the asymptotic performance.

Finally, we evaluated the word error rate of our best-per-
forming configuration on the 1993 Spoke-3 development and
evaluation sets, and the 1994 evaluation set of the WSJ corpus
using a trigram language model. Our results for the 1993 test
sets, presented in Table 1, represent the best reported results to
date on this task [13]1. The speaker-independent word error rate
for nonnative speakers is reduced by a factor of 2 using only 40
adaptation sentences. Using 200 adaptation sentences, the
speaker-adapted error rate of nonnative speakers is comparable
to the native speaker-independent word error rate of the same
recognition system which is 7.2% and 8.1% on the 1993 devel-
opment and 1994 evaluation sets, respectively.

1.The 1994 official ARPA benchmark results were not
available when this paper was written.
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Figure 2: Word error rates for transformation-only, Bayesian-
only, and combined schemes.

Test Set Adaptation
Sentences SI rate (%) SA rate (%)

Dev. 93 40 23.5 10.3

Eval. 93 40 16.5 10.0

Eval. 94

40

23.2

11.3

100 9.4

200 8.2

Table 1. Speaker Independent (SI) and Speaker Adapted (SA)
word error rates on various test sets of nonnative speakers using

different amounts of adaptation data.
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