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ABSTRACT

The performance and rostness of a speech recognition system
can be impreed by adapting the speech models to the ggeak

combined with Bayesian techniques. The combined method
adapts to a e spealkr with small amounts of adaptation data,
but also has nice asymptotic properties anégékll adantage

of large amounts of adaptation data.

the channel and the task. In continuous mixture-density hidden

Markov models the number of component densities is typically 2 TRANFORMATION-BASED ADAPTATION

very lage, and it may not be feasible to acquire gdaamount
of adaptation data for ralt maximum-likelihood estimates.or

Transformation-based approaches to speadaptation

solve this problem, we propose a constrained estimation tech-are typically tet-dependent and require thewnespeakr to

nique for Gaussian mixture densities, and combine it with Baye-

sian techniques to impve its asymptotic properties.a/#/aluate
our algorithms on the Ige-vocalulary Wall Street Journal cor-
pus for nonnatie speakrs of American English. The recognition
error rate is comparable to the spsakdependent accurac
achieved for natve speaérs.

1. INTRODUCTION

Two families of adaptation schemes/adeen proposed in
the past. One transforms the spakfeature space to “match”
the space of the training population [1],[2],[3]. The transforma-

record some predetermined sentences. These utterances are
aligned to ones recorded by reference speakand mappings
between the mnespeakr and the reference-speakacoustic
spaces are obtained usingnession techniques [2][3].

We hare developed a neel transformation-based approach
to speakr adaptation for continuous mixture-density HMMs [7].
We apply the transformation at the distition level, instead of
transforming the featureeectors directlysince we can then use
the xpectation-maximization (EM) algorithm [8] to estimate the
transformation parameters by maximizing theslitkood of the
adaptation data. Using this approach, we are not required to

tion can be applied either directly to the features, or to the speecfime-align the ne- and reference-speakdata, and the transfor-

models [4]. This approach has the adtage of simplicity and, if

mation parameters can be estimated using-spealer data

the number of free parameters is small, then transformation techalone. Our scheme can also benee as a constrained estima-
niques adapt to the user with only a small amount of adaptatiorfion of Gaussian mixtures, since we apply the same transforma-

speech (quick adaptation). Disamivages of transformation
methods are that thieare usually tet-dependent and that the
may not tak full adwantage of lage amounts of adaptation data.
The second mainamily of adaptation algorithms folis a
Bayesian approach, where the sgeakdependent information

is encapsulated in the prior distiibns [5][6]. The Bayesian
approach is td@-independent, and has nice asymptotic proper-
ties: speakr-adaptve performance will corerge to speadr

dependent performance as the amount of adaptation speecglities of the form

increases. Heever, the adaptation rate is usuallywslo

In this paper we present adaptation schemes that combine
the quick adaptation characteristics of transformation-based
methods with the nice asymptotic properties of Bayesian meth-
ods. W first introduce a transformation-based method for con-

tinuous mixture-density hidden Mark models (HMMs).
Adaptation is achiged via a transformation of the speakde-

pendent obseation densities, and the transformation parameters

are obtained using the maximumdilhood (ML) criterion. The
number of transformation parameters can be adjusted tovachie
quick adaptation. Wwill then shav how this algorithm can be

tion to all the components of a particular mixture (or a group of
mixtures, if there is tying of transformations) instead of indepen-
dently reestimating them. It achis quick adaptation by adapt-
ing Gaussians for which there were no obsgons in the
training data, based on data that were mostyligenerated by
other Gaussians of the same or neighboring mixtures.

Specifically we assume that the spealhdependent (SI)
HMM model for the Sl ector procesgy;] has obsemtion den-

Ps(els) = P [ONG Hig Zig) (D)

whereg is the inde of the Gaussian codebook used by state
Adaptation of this system can be adleié by jointly transform-
ing all the Gaussians of each mixturee Wsume that, \gn the
HMM state inde s, , the speadr-dependentector procesg x;]
can be obtained by an underlying procgsg] through the
transformation



X = Agyt+bg . 2

Under this assumption, the speakdapted (SA) obseav
tion densities will hee the form

pSA(thst) - Zp(wl|s[)N(xt, 9“'9+b9'A Z,g 9) ©)

and only the parametev!sg, bg, g =1 .., N, need to be esti-
mated during adaptation, wheMy is the number of distinct

transformations. The same transformations can be applied to
differentHMM states, and this tying of transformations can be

used to optimize performance based on the amountailbble

adaptation data. The transformation parameters can be estimated

using the EM algorithm. The reestimation formulae arevedri
in [7] and are summarized belo

1. Initialize all transformations with
Ag(O) =1, bg(O) =0,g=1,...,N . Setk=0.

2. E-step: Perform one iteration of the foard-backvard algo-

4. |If the corvergence criterion is not met, go to step 2.

Once the transformation parameters are determined, the
constrained ML estimates for the means andidances can be
obtained using

CML

Mo = Rolle ™, (7)
CML

T = AgTigA

3. COMBINED TRANSFORMATION AND
BAYESIAN-BASED ADAPTATION

In Bayesian adaptation techniques the limited amount of
adaptation data is optimally combined with the prionkiedge.

With the appropriate choice of the prior distttions, the maxi-
mum a posteriori (MAP) estimates for the means andraxd-
ances of HMMs with Gaussian obsation densities can be
obtained using linear combinations of the spealependent suf-
ficient statistics (counts) and some quantities that depend on the

rithm on the speech data, using Gaussians transformed with parameters of the prior distriions [5][6]. Based on the reesti-

the current glue of the transformationg\,(k), bg(k) . For
all component Gaussians and all mixtugesollect the suf-
cient statistics

Hig = Zyt(st)(plt(st)xt

Nig
2ig = n_]i-gzs‘yt(st)(ﬁt(st)(xt_Hig)(xt_nig)T (4)
Nig = Vi(s)@i(sp)
2

where vy, (s;) is the probability of being at stateat timet
given the current HMM parameters, the summatiovés o

all times and HMM states that share the same mixture com-

ponents, and @, (s,) is the posterior probability

Pu(S) = P(erg | Ag(K), by(k)., %, ) . )

3. M-step: Compute the ne transformation parameters. Under
the assumption of diagonah@riance and transformation
matrices, the elementsandb of Ag(k +1), bg(k +1)
can be obtained by solving the follimg equations for eadh

0o n-DZ pl]
%z@ E.m Ezoz;*
2 _2

T+0. U

n_“l i0_ o
O i 2 0
T [

where for simplicity we hae dropped the dependencegmn
The \ariables u;, o}, [, 6; are elements of thesgtors

and diagonal matrlcqslg, Z,g, uig, iig, respectiely.

mation formulae for the MAP estimates of the means awakico
ances of HMM with continuous mixture densities that are
derived in [6], a simplified grsion of Bayesian estimation can be
implemented by linearly combining the speaindependent and
the speag&rdependent counts for each component density

D([ng = )\Extfg: + (1—)\)D<Eng

SA S SD

XX g = A XX [lg + (1—A) [kx' Og
SA _ S SD
Nig = Anjg + (1=A)ng

., (8

where the superscripts denote the datr avhich the follaving
statistics are collected during one iteration of the &mdaback-
ward algorithm

kg = Z Yi(S)@i(8)%;

D(X Lg = Zyt(s)(Pt(S)XtXt . 9)

th(s)cpt(s)

We will refer to this method as approximate Bayesian adaptation.
The weightA controls the adaptation rate. Using the combined
counts, we can compute the approximate MAP (AMAP) esti-
mates of the means andvadiances of each Gaussian component
density from

AMAP _ D‘ﬁn;
|g SA
9 . (10)
T SA
SAMAP _ (XX Lg AMAP( AMAP)T
ig SA Hig

ig



Similar adaptation schemes vieaalso appeared for discrete
HMMs [9], and can be used to adapt the mixture weights in the

approximate Bayesian scheme described here. 40
. 1 transform
In Bayesian adaptation schemes, only the Gaussians of the x: 2 transforms
spealerindependent models that are moseljkto hare gener- 3o o vansoms 1
ated some of the adaptation data will be adapted to theespeak o: 160 transforms

These Gaussians may represent only a small fraction of the tota
number in continuous HMMs with a g number of Gaussians.
On the other hand, as the amount of adaptation data increases
the spea&r-dependent statistics will dominate the spadkde-
pendent priors and Bayesian techniques will approach epeak
dependent performance e/8hould, therefore, aim for an adapta-
tion scheme that retains the nice properties of Bayesian schemepg
for large amounts of adaptation data, and has ingutgerfor-
mance for small amounts of adaptation data.cAh achiee this
by using our transformation-based adaptation as a preprocessing
step to transform the spesakindependent models so that yhe 10 L m = > = = = o
better match the me spealer characteristics and impt® the Number of adaptation sentences

prior information in MAP estimation schemes. In the approxi-
mate Bayesian adaptation, this can be accomplished by first
transforming the speekindependent counts using the method
described in Section 2 and then combining them with the
spealer-dependent counts collected using the adaptation data.
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Figure 1: Wrd error rates forarious numbers of
transformations for the transformation-based adaptation

where we hee plotted the wrd error rate as a function of the
number of adaptation sentences, multiple transformations out-
perform \ery constrained schemes that use 1 or 2 transforma-
4. EXPERIMENTAL RESULTS tions. The performance with 20 and 40 transformations is

We evaluated our adaptation algorithms on the “sp8k similar,_ and is better than the less constrainet_:l case of 160 trans-
task of the phase-1, e-wcahulary Wall Street Journal (WSJ) formations. Hwever,_as the amount of adaptatlop_data increases,
corpus [10], trying to impree recognition performance for non- the 160 transformations talac_i\antage of the add_ltlo_n_al data and
native speakrs of American English. Experiments were carried putperform the more constr_alned schemes. A S|gn|f|cant decrease
out using SRE DECIPHERM speech recognition system con- N error rate.ls obt.alned ywth aswfeas 5 adaptation senten.ces.. .
figured with a six-feature front end that outputs 12 cepstral coef-WWhen adapting using a single sentence, the performance is simi-
ficients, cepstral engy, and their first- and second-order lar for different qumbers of transfqrmano_nsx,cep_t for the case
differences. The cepstral features are computed freastdeiu- of 2 transfo_rma_tlons. T_he reason is that in our |mpleme_ntat|on a
rier transform (FFT) filterbank, and subsequent cepstral-meanfransformation is reestimated only if the number of olz&ms
normalization on a sentence basis is performezlugéd genonic S lager than a threshold; otherwise, we use a global transforma-
hidden Markv models with an arbitrary dese of Gaussian tion estimated from all data. Since mgst of the transformatlpns
sharing across dérent HMM states as described in [11]. The are backd Qf to the global transformatlop for.the case of a sin-
speaker-independent continuous HMM systems that we used asdle adaptation sentence, the cases witferdifit numbers of
seed models for adaptation were gerdisendent, trained on  transformationsxhibit similar performance.
140 speadrs and 17,000 sentences for each geiitiarh of the In Figure 2 we compare theovd error rates of the trans-
two systems had 12,000 coxttelependent phonetic models that - formation-only method with 20 and 160 transformations, the
shared 500 Gaussian cod_ebooks_ with 32 Gaussian componenigsproximate Bayesian method with wentional priors, and the
per codebook. 6t fast eperimentation, we used the progreesi  compined method forarious amounts of adaptation data. In the
search frameork [12]: an initial, speadrindependent recog-  |atter, the number of transformationsw/optimized according to
nizer with a bigram language model output¥avlattices for all  the aailable amount of adaptation data. The transformation-only
the utterances in the test set. Thesedwattices are then res-  method with 20 transformations outperforms the Bayesian
cored using speakadapted models. &/ used the baseline scheme with corentional priors when feer than 10 sentences
5,000-vord, closed-ucatulary bigram and trigram language are used for adaptation, whereas the situativerses as more
models proided by the MIT Lincoln LaboratoryThe trigram  aqaptation sentences are used. This is consistent with our claim
language model as implemented using the N-best rescoring that transformation-based methods adaster whereas Baye-
paradigm, by rescoring the list of the N-best sentegpetheses  gjan schemes ha better asymptotic properties. The performance
generated using the bigram language mode. of the transformation approach fordaramounts of adaptation

In the first series ofx@eriments we used the bigram lan- data can be imprad by increasing the number of transforma-

guage model. Wfirst ¥aluated the performance of the transfor- {ions. V& can also see in the same figure the success of the com-

mation-based adaptation faanous numbers of transformations Pined method, which significantly outperforms the firsb tw
and amounts of adaptation data. As we can see in Figure 1methods wer the whole range of adaptation sentences that we
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Figure 2: Wrd error rates for transformation-onBayesian-
only, and combined schemes.

4.
examined. The transformation step yides quick adaptation
when fev adaptation sentences are used, and the Bayesian reesti-
mation step impnees the asymptotic performance. 5.

Finally, we evaluated the ward error rate of our best-per-
forming configuration on the 1993 SmpR deelopment and
evaluation sets, and the 199dakiation set of the WSJ corpus
using a trigram language model. Our results for the 1993 test6.
sets, presented inable 1, represent the best reported results to
date on this task [13] The speatindependent wrd error rate
for nonnatve speakrs is reduced by adtor of 2 using only 40 7.
adaptation sentences. Using 200 adaptation sentences, the
spealer-adapted error rate of nonnadispeakrs is comparable
to the natte speakrindependent wrd error rate of the same
recognition system which is 7.2% and 8.1% on the 1998lde g
opment and 1994valuation sets, respeatily.

Table 1. Speak Independent (SI) and Spealddapted (SA)
word error rates onarious test sets of nonnagispeakrs using
different amounts of adaptation data.

13.

1. The 1994 dicial ARPA benchmark results were not
available when this paperag written.

Adaptation o o 9.
Test Set Sentences Sl rate (%) SA rate (%)
Dev. 93 40 235 10.3
10.
Eval. 93 40 16.5 10.0
40 11.3
11.
Eval. 94 100 23.2 9.4
200 8.2 12.
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