
ABSTRACT

In this paper we explore the effectiveness of constructing tele-
phone acoustic models using a high-quality speech corpus.
Results are presented for several front-end signal processing and
feature mapping techniques. The algorithms were tested using
SRI’s DECIPHER™ speech recognition system [1-5] on several
telephone corpora. The results show that (a) most of the perfor-
mance loss when testing on telephone speech is due to the loss
of information associated with the telephone bandwidth; (b)
telephone-bandwidth systems trained with high-quality speech
can outperform systems that are trained on telephone speech
when tested on telephone speech; and (c) robust signal process-
ing can allow speech recognizers to maintain performance when
wide-bandwidth acoustic models are tested with telephone
speech

1. INTRODUCTION

In many practical situations an automatic speech recog-
nizer has to operate in several different but well-defined acoustic
environments. For example, the same recognition task may be
implemented using different microphones or transmission chan-
nels. In such situations it may not be practical to collect speech
corpora to train the acoustic models of the recognizer for each
acoustic environment. The research discussed in this paper
focuses on how to modify acoustic models (such as those trained
with high-quality Sennheiser recordings) for use over the tele-
phone.

There are a number of possible approaches that we could
take to modifying our high-quality acoustic models, including:

• Modify the front-end signal processing

• Use feature mapping

• Adapt the parameters of the acoustic models

• Play the high-quality data over the telephone

• Collect a new telephone corpus

To study the differences in speech recognition perfor-
mance when training with high-quality speech compared to
training with telephone-quality speech, we collected a pilot
speech corpus focused on the Airline Travel Information Task
(ATIS). This pilot corpus allowed us to compare different train-
ing and testing paradigms and evaluate recognition performance
differences on a simultaneous test set consisting of both high-

quality and telephone speech recordings. In addition, we report
the results of experiments on theWall Street Journal (WSJ) dic-
tation corpus for simultaneous Sennheiser/telephone recordings
when the acoustic models are trained with high-quality input.
Finally, we compare speech recognition performance on the
Switchboard Credit Card Corpus when training with either high-
quality or telephone-quality acoustics.

Previous research by Chigier [6] has dealt with phoneme
classification rates on the TIMIT and N-TIMIT corpora.
Although he showed that the phone-classification error rates are
lower for TIMIT than for N-TIMIT, the reason for this differ-
ence in performance was not determined. In this paper we show
that the difference in performance between high-quality and
telephone-quality speech is primarily due to the loss of informa-
tion associated with the telephone bandwidth.

2. ATIS SIMULTANEOUS CORPUS

A corpus of both training and testing speech was collected
using simultaneous recordings made from subjects wearing a
Sennheiser HMD 414 microphone and holding a telephone
handset. The speech from the telephone handset was transmitted
over local telephone lines during data collection. The telephone
speech was routed using a phone call that was made from an SRI
internal line (interfaced to the SRI PBX) to an external Pacific-
Bell line. The Pacific-Bell telephone line was interfaced to a
Computerfone III which automatically answered the call and
routed the speech audio to an Ariel analog-to-digital converter
card.

Ten different telephone handsets were used. The tele-
phones selected consisted of three carbon button telephones, two
inexpensive Radio Shack telephones, and a variety of other
common telephone types used in our lab. The same ten tele-
phones were used for collecting both the training and testing
sets. Only a single phone line was used for this corpus collection
since the acoustic variation due to the telephone handset is one
of the most important variables for telephone speech [7].

Thirteen male talkers who are familiar with speech recog-
nition and the ATIS system were selected for this pilot data col-
lection effort. Ten talkers were designated as training talkers,
and three talkers were designated as the test set. Each of the
training talkers read approximately 30 sentences for each of the
ten different telephone handsets. The sentences that were used
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for both training and testing prompts were selected at random
from the ATIS MADCOW corpus [8]. The training set consisted
of 3,000 simultaneous recordings of Sennheiser microphone and
telephone speech. The test set consisted of 400 simultaneous
recordings of Sennheiser and telephone speech.

3. ATIS EXPERIMENTAL RESULTS

The results obtained with this pilot corpus are shown in
Table 1. The front-end signal processing consisted of 6 cepstral
features in a tied-mixture acoustic model. The mean of each cep-
stral coefficient was removed on a per-sentence basis. The wide-
bandwidth front-end signal processing consisted of a FFT-based
filterbank using frequencies from 100-6400 Hz and 12 cepstral
coefficients for the cepstral vector (C1-C12). The telephone-
bandwidth front-end consisted of downsampling the speech data
(16KHz samples/second to 8 KHz samples/second) followed by
a FFT-based filterbank using frequencies 300-3300 Hz and 8 cep-
stral coefficients for the cepstral vectors (C1-C8). In both cases
we remove the mean of each cepstral coefficient over the sen-
tence. The number of cepstral coefficients for the delta and delta-
delta cepstral vectors are the same as for the cepstral vector. The
number of cepstral vectors used for each front-end had been opti-
mized using other experimental corpora.

We can see from Table 1 that there is a 15.4% decrease in
performance when using a telephone front end (7.8% increases to
9.0% word error) and testing on Sennheiser data. This is due to
the loss of information in reducing the bandwidth from 100-6400
Hz to 300-3300 Hz. However, when we are using a telephone
front end, there is only a 7.8% increase in word error when test-
ing on telephone speech compared to testing on Sennheiser
speech (9.7% versus 9.0%). This is very surprising result, and we
had expected a much bigger performance difference when Sen-
nheiser models are tested on telephone speech acoustics.

Another surprising result shown in Table 1 is for acoustic
models trained with telephone speech. For this experiment, per-
formance is worse than when the acoustic models are trained
with high-quality Sennheiser speech. (10.3% matched train and
test on telephone compared to 9.7% train Sennheiser and test
telephone).

Acoustic Model Training Test Set Word Error (%)

Training
Data

Front End
Bandwidth

Sennheiser Telephone

Sennheiser Wide 7.8 19.4

Sennheiser Telephone 9.0 9.7

Telephone Telephone 10.0 10.3

Table 1: Effect of Different Training and Front-End Bandwidth
on Test Set Performance. Results are Word Error Rate on the 400

Sentence Simultaneous Test Set

In addition to these experiments, we performed a number
of experiments to determine the robustness of a speech recogni-
tion system that uses wide-bandwidth acoustic models when
tested with telephone speech. A MMSE spectral estimation
algorithm was used to improve the robustness of these models.
This algorithm is described in a companion paper for this con-
ference [1] which we call Probabilistic Optimum Filtering
(POF). This model is a piecewise linear transformation applied
to the noisy speech observations; it constructs a minimum-mean
square estimate of the clean speech features recorded using the
Sennheiser microphone.

All POF mapping experiments use the simultaneous
recordings from the training portion of the ATIS corpus
described in Section 2 with the except of the “WSJ Robust
POF15 mapping”, which used simultaneous recordings from the
WSJ0 + WSJ1 corpus.

The results described in Table 2 show that the probabilistic
mapping algorithm can be effectively used to reduce the error
rate over the baseline signal processing algorithm. The error rate
of the best-performing system on the telephone test set (8.7%) is
only 11% higher than the error rate on the Sennheiser test
(7.8%).

The error rate of the “POF mapping with Cepstral SNR”
system (8.7%) is better than any telephone-bandwidth system
listed in Table 1 (e.g. 9.7% trained with Sennheiser data or
10.3% trained with telephone data). There are several possible
explanations for this. The telephone-bandwidth spectral analysis
does not look at information outside of the frequencies from
300-3300 Hz. The information that is contained outside of the
standard telephone bandwidth may be unreliable, thus causing
performance to degrade when using the baseline processing
algorithm which uses that information. The POF mapping algo-
rithm is able to extract the useful information from 100-300 and
3300-6400 Hz.

A second explanation for why the “POF mapping with
Cepstral SNR” outperforms the telephone-bandwidth spectral
analysis is that it is exploiting correlations across both time and
frequency to predict the missing information that is lost when

Experiment
Telephone Word

Error (%)

Baseline Zero-Mean Cepstrum 19.4

POF Mapping with Cepstrum 9.4

POF Mapping with Spectral SNR 8.9

POF Mapping with Cepstral SNR 8.7

WSJ Robust POF15 Mapping 9.6

Table 2: Performance on ATIS Telephone Test Data using Wide-
Bandwidth HMM Acoustic Models and Different Signal

Processing Estimators



the speech is transmitted through the telephone network. In
addition, the difference between the “POF Mapping with Cep-
strum” and the “POF Mapping with Cepstral SNR” algorithm is
that the latter mapping algorithm uses global information about
the waveform. This global information is the estimate of the
noise level.

4. WSJ EXPERIMENTAL RESULTS

A second set of experiments was performed on theWall
Street Journal (WSJ) Speech Corpus [9]. We evaluated our sys-
tem on the 5000-word-recognition closed-vocabulary speaker-
independent speech-recognition task Spoke S6: known micro-
phone (telephone). This is a simultaneously recorded test set
using both Sennheiser and an AT&T 712 telephone over local
telephone lines.

The version of the DECIPHER speaker-independent con-
tinuous speech recognition system used for these experiments is
based on a progressive-search strategy [3] and continuous-den-
sity, GENONIC hidden Markov models (HMMs) [2]. Gender-
dependent models are used in all passes. Gender selection is
accomplished by selecting the gender with the higher recogni-
tion likelihood.

The acoustic models used by the HMM system were
trained with 37,000 sentences of Sennheiser data from 280
speakers, a set officially designated as the WSJ0+WSJ1 many-
speaker baseline training. A 5K closed-vocabulary back-off tri-
gram language model provided by M.I.T. Lincoln Laboratory
for the WSJ task was used. Two front-end analyses are com-
pared in the experiments below: a wide-bandwidth front-end
analysis and a telephone-bandwidth front-end analysis. Gender-
dependent HMM acoustic models were constructed for each of
the two front-ends used.

The front-end processing extracts one long spectral vector
which consists of the following six feature components: cep-
strum, energy and their first and second order derivatives. The
dimensionality of this feature is 39 (13 * 3) for the wide-band-
width spectral analysis and 27 (9 * 3) for the telephone-band-
width spectral analysis. The cepstral features are computed from
an FFT filterbank, and subsequent cepstral-mean normalization
on a sentence by sentence basis is performed.

Before using wide-bandwidth context-dependent genonic
HMMs, a robust estimate of the Sennheiser cepstral parameters
is computed using Probabilistic Optimum Filtering [1]. The
robust front-end analysis is designed for an unknown micro-
phone condition. The POF mapping algorithm estimates are
conditioned on the noisy cepstral observations. Separate map-
pings are trained for each of the 14 microphones in the baseline
WSJ0+WSJ1 si_tr_s stereo training. When the default no-trans-
formation zero-mean cepstra are included, this makes a total of
15 estimated feature streams. These feature streams are com-
puted on each test waveform, and the two feature streams with
the highest likelihoods (using a simplified HMM for scoring the
features) are averaged together. In all cases the first and second
delta parameters are computed on these estimated cepstral val-
ues.

The results in Table 3 show that most of the loss in perfor-
mance between recognizing on high-quality Sennheiser record-
ings and on local telephone speech is due to the loss of
information outside the telephone bandwidth. There is an
increase in the word-error rate of 66% when testing on Sen-
nheiser recordings with a wide-bandwidth analysis (5.8%) com-
pared to testing with a telephone-bandwidth analysis (9.6%).

The loss in performance when switching from Sennheiser
recordings to telephone recordings is small in comparison to the
loss of information due to bandwidth restrictions. There is a 14%
increase in the word-error rate when testing on the Sennheiser
recordings (9.6%) compared to testing on the AT&T telephone
recordings (10.9%).

Note that the performance using the “Robust POF15 Ceps-
tral Mapping” with wide-bandwidth HMM acoustic models per-
forms at almost the same level as a telephone-bandwidth HMM
analysis (11.9 versus 10.9). This robust signal processing is able
to maintain a high level of performance even when faced with
dramatically different acoustic input.

In the ATIS experimental results described in Section 3,
there was only an increase in word-error rate of 15% when
switching from a wide-bandwidth analysis to a telephone-band-
width analysis. However, in this experiment, we observed a 66%
increase in the word-error rate when switching from the wide-
bandwidth to the telephone-bandwidth conditions. There are
several reasons for this difference. The first reason is due to the
difference in tasks: the WSJ task has a larger vocabulary, con-
tains more acoustically confusing words, and has a higher per-
plexity language model than the ATIS task. The second reason is
that we used much better HMM acoustic models for the WSJ
task (Genonic models) than for the ATIS task (tied-mixture mod-
els) and these differences between conditions are more notice-
able when the word-error rates are lower.

The word-error rate for the WSJ Nov. 1993 evaluation test
set was 8.8% on the Sennheiser microphone and 13.1% on the
telephone handset using telephone-bandwidth acoustic models.

Front-End
Bandwidth

Signal Processing Test Set
Word

Error (%)

Wide Standard Sennheiser 5.8

Telephone Standard Sennheiser 9.6

Telephone Standard Telephone 10.9

Wide Robust POF15
Cepstral Mapping

Telephone 11.9

Table 3: Performance on the Aug 1993 WSJ Spoke S6
Development Test Set for Simultaneous Sennheiser/Telephone

Recordings



5. SWITCHBOARD CREDIT-CARD EXPERI-
MENTAL RESULTS

In many cases it is not possible to collect a simultaneous
database consisting of Sennheiser recordings along with the
desired type of recording. This is the case for a realistic tele-
phone speech database.

A third set of experiments was performed on the Switch-
board Credit Card task [10]. These experiments were performed
at a workshop for digital analysis techniques of speech signals
hosted by the CAIP center at Rutgers. The test-set used at the
CAIP workshop consists of sentences extracted from continuous
conversations between two talkers. These conversations were
recorded digitally over long distance telephone lines, and is a
167 sentence subset of the Switchboard Corpus. The baseline
language model for this workshop was provided by BBN.

Telephone-bandwidth phonetically tied-mixture HMM
acoustic models were trained using the WSJ0 speaker-indepen-
dent (84 talker)Wall Street Journal (WSJ) database [9] which
was recorded using a high-quality Sennheiser microphone.

The word-error rates in this test set are very high and other
speech recognition error rates at the conference were similar. We
hypothesize that this is due to the conversational nature of the
speech used for testing and not due to the acoustics of the test
set. Note that the error rates when trained using 1100 credit-card
telephone waveforms (68.1%) are very similar to those obtained
when trained with 7000 WSJ0 high-quality waveforms (71.5%).
In addition, the WSJ0 acoustic models can be used to improve
the quality of the telephone acoustic models (67.1%) when they
are used as the initial seed models.

6. CONCLUSIONS

We have presented speech-recognition results on three
separate corpora: an ATIS test set consisting of simultaneous
high-quality and telephone-quality recordings, a WSJ test set
consisting of simultaneous high-quality and telephone-quality
recordings, and a Switchboard test set consisting of sentences
extracted from conversations over long-distance telephone lines.

We have shown that:

• Most of the performance loss in converting wide-band-
width models to telephone speech models is due to the loss
of information associated with the telephone bandwidth.

Training Data Word Error (%)

Credit Card 68.1

WSJ0 SI-Many Corpus 71.5

Credit Card Models Booted from WSJ0
Models

67.1

Table 4: Word Error for Spontaneous Conversational Speech
over Long Distance Telephone Lines

• It is possible to construct acoustic models for telephone
speech using a high-quality speech corpus with only a
minor increase in recognition word-error rate.

• A telephone-bandwidth system trained with high-quality
speech can outperform a system that is trained on tele-
phone speech even when tested on telephone speech.

• The variability introduced by the telephone handset does
not degrade speech recognition performance.

• Robust signal processing can be designed to maintain
speech recognition performance using wide-bandwidth
HMM models with a telephone-bandwidth test set.
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ABSTRACT

In this paper we explore the effectiveness of constructing tele-
phone acoustic models using a high-quality speech corpus.
Results are presented for several front-end signal processing and
feature mapping techniques. The algorithms were tested using
SRI’s DECIPHER™ speech recognition system [1-5] on several
telephone corpora. The results show that (a) most of the perfor-
mance loss when testing on telephone speech is due to the loss
of information associated with the telephone bandwidth; (b)
telephone-bandwidth systems trained with high-quality speech
can outperform systems that are trained on telephone speech
when tested on telephone speech; and (c) robust signal process-
ing can allow speech recognizers to maintain performance when
wide-bandwidth acoustic models are tested with telephone
speech

1. INTRODUCTION

In many practical situations an automatic speech recog-
nizer has to operate in several different but well-defined acoustic
environments. For example, the same recognition task may be
implemented using different microphones or transmission chan-
nels. In such situations it may not be practical to collect speech
corpora to train the acoustic models of the recognizer for each
acoustic environment. The research discussed in this paper
focuses on how to modify acoustic models (such as those trained
with high-quality Sennheiser recordings) for use over the tele-
phone.

There are a number of possible approaches that we could
take to modifying our high-quality acoustic models, including:

• Modify the front-end signal processing

• Use feature mapping

• Adapt the parameters of the acoustic models

• Play the high-quality data over the telephone

• Collect a new telephone corpus

To study the differences in speech recognition perfor-
mance when training with high-quality speech compared to
training with telephone-quality speech, we collected a pilot
speech corpus focused on the Airline Travel Information Task
(ATIS). This pilot corpus allowed us to compare different train-
ing and testing paradigms and evaluate recognition performance
differences on a simultaneous test set consisting of both high-

quality and telephone speech recordings. In addition, we report
the results of experiments on theWall Street Journal (WSJ) dic-
tation corpus for simultaneous Sennheiser/telephone recordings
when the acoustic models are trained with high-quality input.
Finally, we compare speech recognition performance on the
Switchboard Credit Card Corpus when training with either high-
quality or telephone-quality acoustics.

Previous research by Chigier [6] has dealt with phoneme
classification rates on the TIMIT and N-TIMIT corpora.
Although he showed that the phone-classification error rates are
lower for TIMIT than for N-TIMIT, the reason for this differ-
ence in performance was not determined. In this paper we show
that the difference in performance between high-quality and
telephone-quality speech is primarily due to the loss of informa-
tion associated with the telephone bandwidth.

2. ATIS SIMULTANEOUS CORPUS

A corpus of both training and testing speech was collected
using simultaneous recordings made from subjects wearing a
Sennheiser HMD 414 microphone and holding a telephone
handset. The speech from the telephone handset was transmitted
over local telephone lines during data collection. The telephone
speech was routed using a phone call that was made from an SRI
internal line (interfaced to the SRI PBX) to an external Pacific-
Bell line. The Pacific-Bell telephone line was interfaced to a
Computerfone III which automatically answered the call and
routed the speech audio to an Ariel analog-to-digital converter
card.

Ten different telephone handsets were used. The tele-
phones selected consisted of three carbon button telephones, two
inexpensive Radio Shack telephones, and a variety of other
common telephone types used in our lab. The same ten tele-
phones were used for collecting both the training and testing
sets. Only a single phone line was used for this corpus collection
since the acoustic variation due to the telephone handset is one
of the most important variables for telephone speech [7].

Thirteen male talkers who are familiar with speech recog-
nition and the ATIS system were selected for this pilot data col-
lection effort. Ten talkers were designated as training talkers,
and three talkers were designated as the test set. Each of the
training talkers read approximately 30 sentences for each of the
ten different telephone handsets. The sentences that were used
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for both training and testing prompts were selected at random
from the ATIS MADCOW corpus [8]. The training set consisted
of 3,000 simultaneous recordings of Sennheiser microphone and
telephone speech. The test set consisted of 400 simultaneous
recordings of Sennheiser and telephone speech.

3. ATIS EXPERIMENTAL RESULTS

The results obtained with this pilot corpus are shown in
Table 1. The front-end signal processing consisted of 6 cepstral
features in a tied-mixture acoustic model. The mean of each cep-
stral coefficient was removed on a per-sentence basis. The wide-
bandwidth front-end signal processing consisted of a FFT-based
filterbank using frequencies from 100-6400 Hz and 12 cepstral
coefficients for the cepstral vector (C1-C12). The telephone-
bandwidth front-end consisted of downsampling the speech data
(16KHz samples/second to 8 KHz samples/second) followed by
a FFT-based filterbank using frequencies 300-3300 Hz and 8 cep-
stral coefficients for the cepstral vectors (C1-C8). In both cases
we remove the mean of each cepstral coefficient over the sen-
tence. The number of cepstral coefficients for the delta and delta-
delta cepstral vectors are the same as for the cepstral vector. The
number of cepstral vectors used for each front-end had been opti-
mized using other experimental corpora.

We can see from Table 1 that there is a 15.4% decrease in
performance when using a telephone front end (7.8% increases to
9.0% word error) and testing on Sennheiser data. This is due to
the loss of information in reducing the bandwidth from 100-6400
Hz to 300-3300 Hz. However, when we are using a telephone
front end, there is only a 7.8% increase in word error when test-
ing on telephone speech compared to testing on Sennheiser
speech (9.7% versus 9.0%). This is very surprising result, and we
had expected a much bigger performance difference when Sen-
nheiser models are tested on telephone speech acoustics.

Another surprising result shown in Table 1 is for acoustic
models trained with telephone speech. For this experiment, per-
formance is worse than when the acoustic models are trained
with high-quality Sennheiser speech. (10.3% matched train and
test on telephone compared to 9.7% train Sennheiser and test
telephone).

Acoustic Model Training Test Set Word Error (%)

Training
Data

Front End
Bandwidth

Sennheiser Telephone

Sennheiser Wide 7.8 19.4

Sennheiser Telephone 9.0 9.7

Telephone Telephone 10.0 10.3

Table 1: Effect of Different Training and Front-End Bandwidth
on Test Set Performance. Results are Word Error Rate on the 400

Sentence Simultaneous Test Set

In addition to these experiments, we performed a number
of experiments to determine the robustness of a speech recogni-
tion system that uses wide-bandwidth acoustic models when
tested with telephone speech. A MMSE spectral estimation
algorithm was used to improve the robustness of these models.
This algorithm is described in a companion paper for this con-
ference [1] which we call Probabilistic Optimum Filtering
(POF). This model is a piecewise linear transformation applied
to the noisy speech observations; it constructs a minimum-mean
square estimate of the clean speech features recorded using the
Sennheiser microphone.

All POF mapping experiments use the simultaneous
recordings from the training portion of the ATIS corpus
described in Section 2 with the except of the “WSJ Robust
POF15 mapping”, which used simultaneous recordings from the
WSJ0 + WSJ1 corpus.

The results described in Table 2 show that the probabilistic
mapping algorithm can be effectively used to reduce the error
rate over the baseline signal processing algorithm. The error rate
of the best-performing system on the telephone test set (8.7%) is
only 11% higher than the error rate on the Sennheiser test
(7.8%).

The error rate of the “POF mapping with Cepstral SNR”
system (8.7%) is better than any telephone-bandwidth system
listed in Table 1 (e.g. 9.7% trained with Sennheiser data or
10.3% trained with telephone data). There are several possible
explanations for this. The telephone-bandwidth spectral analysis
does not look at information outside of the frequencies from
300-3300 Hz. The information that is contained outside of the
standard telephone bandwidth may be unreliable, thus causing
performance to degrade when using the baseline processing
algorithm which uses that information. The POF mapping algo-
rithm is able to extract the useful information from 100-300 and
3300-6400 Hz.

A second explanation for why the “POF mapping with
Cepstral SNR” outperforms the telephone-bandwidth spectral
analysis is that it is exploiting correlations across both time and
frequency to predict the missing information that is lost when

Experiment
Telephone Word

Error (%)

Baseline Zero-Mean Cepstrum 19.4

POF Mapping with Cepstrum 9.4

POF Mapping with Spectral SNR 8.9

POF Mapping with Cepstral SNR 8.7

WSJ Robust POF15 Mapping 9.6

Table 2: Performance on ATIS Telephone Test Data using Wide-
Bandwidth HMM Acoustic Models and Different Signal

Processing Estimators



the speech is transmitted through the telephone network. In
addition, the difference between the “POF Mapping with Cep-
strum” and the “POF Mapping with Cepstral SNR” algorithm is
that the latter mapping algorithm uses global information about
the waveform. This global information is the estimate of the
noise level.

4. WSJ EXPERIMENTAL RESULTS

A second set of experiments was performed on theWall
Street Journal (WSJ) Speech Corpus [9]. We evaluated our sys-
tem on the 5000-word-recognition closed-vocabulary speaker-
independent speech-recognition task Spoke S6: known micro-
phone (telephone). This is a simultaneously recorded test set
using both Sennheiser and an AT&T 712 telephone over local
telephone lines.

The version of the DECIPHER speaker-independent con-
tinuous speech recognition system used for these experiments is
based on a progressive-search strategy [3] and continuous-den-
sity, GENONIC hidden Markov models (HMMs) [2]. Gender-
dependent models are used in all passes. Gender selection is
accomplished by selecting the gender with the higher recogni-
tion likelihood.

The acoustic models used by the HMM system were
trained with 37,000 sentences of Sennheiser data from 280
speakers, a set officially designated as the WSJ0+WSJ1 many-
speaker baseline training. A 5K closed-vocabulary back-off tri-
gram language model provided by M.I.T. Lincoln Laboratory
for the WSJ task was used. Two front-end analyses are com-
pared in the experiments below: a wide-bandwidth front-end
analysis and a telephone-bandwidth front-end analysis. Gender-
dependent HMM acoustic models were constructed for each of
the two front-ends used.

The front-end processing extracts one long spectral vector
which consists of the following six feature components: cep-
strum, energy and their first and second order derivatives. The
dimensionality of this feature is 39 (13 * 3) for the wide-band-
width spectral analysis and 27 (9 * 3) for the telephone-band-
width spectral analysis. The cepstral features are computed from
an FFT filterbank, and subsequent cepstral-mean normalization
on a sentence by sentence basis is performed.

Before using wide-bandwidth context-dependent genonic
HMMs, a robust estimate of the Sennheiser cepstral parameters
is computed using Probabilistic Optimum Filtering [1]. The
robust front-end analysis is designed for an unknown micro-
phone condition. The POF mapping algorithm estimates are
conditioned on the noisy cepstral observations. Separate map-
pings are trained for each of the 14 microphones in the baseline
WSJ0+WSJ1 si_tr_s stereo training. When the default no-trans-
formation zero-mean cepstra are included, this makes a total of
15 estimated feature streams. These feature streams are com-
puted on each test waveform, and the two feature streams with
the highest likelihoods (using a simplified HMM for scoring the
features) are averaged together. In all cases the first and second
delta parameters are computed on these estimated cepstral val-
ues.

The results in Table 3 show that most of the loss in perfor-
mance between recognizing on high-quality Sennheiser record-
ings and on local telephone speech is due to the loss of
information outside the telephone bandwidth. There is an
increase in the word-error rate of 66% when testing on Sen-
nheiser recordings with a wide-bandwidth analysis (5.8%) com-
pared to testing with a telephone-bandwidth analysis (9.6%).

The loss in performance when switching from Sennheiser
recordings to telephone recordings is small in comparison to the
loss of information due to bandwidth restrictions. There is a 14%
increase in the word-error rate when testing on the Sennheiser
recordings (9.6%) compared to testing on the AT&T telephone
recordings (10.9%).

Note that the performance using the “Robust POF15 Ceps-
tral Mapping” with wide-bandwidth HMM acoustic models per-
forms at almost the same level as a telephone-bandwidth HMM
analysis (11.9 versus 10.9). This robust signal processing is able
to maintain a high level of performance even when faced with
dramatically different acoustic input.

In the ATIS experimental results described in Section 3,
there was only an increase in word-error rate of 15% when
switching from a wide-bandwidth analysis to a telephone-band-
width analysis. However, in this experiment, we observed a 66%
increase in the word-error rate when switching from the wide-
bandwidth to the telephone-bandwidth conditions. There are
several reasons for this difference. The first reason is due to the
difference in tasks: the WSJ task has a larger vocabulary, con-
tains more acoustically confusing words, and has a higher per-
plexity language model than the ATIS task. The second reason is
that we used much better HMM acoustic models for the WSJ
task (Genonic models) than for the ATIS task (tied-mixture mod-
els) and these differences between conditions are more notice-
able when the word-error rates are lower.

The word-error rate for the WSJ Nov. 1993 evaluation test
set was 8.8% on the Sennheiser microphone and 13.1% on the
telephone handset using telephone-bandwidth acoustic models.

Front-End
Bandwidth

Signal Processing Test Set
Word

Error (%)

Wide Standard Sennheiser 5.8

Telephone Standard Sennheiser 9.6

Telephone Standard Telephone 10.9

Wide Robust POF15
Cepstral Mapping

Telephone 11.9

Table 3: Performance on the Aug 1993 WSJ Spoke S6
Development Test Set for Simultaneous Sennheiser/Telephone

Recordings



5. SWITCHBOARD CREDIT-CARD EXPERI-
MENTAL RESULTS

In many cases it is not possible to collect a simultaneous
database consisting of Sennheiser recordings along with the
desired type of recording. This is the case for a realistic tele-
phone speech database.

A third set of experiments was performed on the Switch-
board Credit Card task [10]. These experiments were performed
at a workshop for digital analysis techniques of speech signals
hosted by the CAIP center at Rutgers. The test-set used at the
CAIP workshop consists of sentences extracted from continuous
conversations between two talkers. These conversations were
recorded digitally over long distance telephone lines, and is a
167 sentence subset of the Switchboard Corpus. The baseline
language model for this workshop was provided by BBN.

Telephone-bandwidth phonetically tied-mixture HMM
acoustic models were trained using the WSJ0 speaker-indepen-
dent (84 talker)Wall Street Journal (WSJ) database [9] which
was recorded using a high-quality Sennheiser microphone.

The word-error rates in this test set are very high and other
speech recognition error rates at the conference were similar. We
hypothesize that this is due to the conversational nature of the
speech used for testing and not due to the acoustics of the test
set. Note that the error rates when trained using 1100 credit-card
telephone waveforms (68.1%) are very similar to those obtained
when trained with 7000 WSJ0 high-quality waveforms (71.5%).
In addition, the WSJ0 acoustic models can be used to improve
the quality of the telephone acoustic models (67.1%) when they
are used as the initial seed models.

6. CONCLUSIONS

We have presented speech-recognition results on three
separate corpora: an ATIS test set consisting of simultaneous
high-quality and telephone-quality recordings, a WSJ test set
consisting of simultaneous high-quality and telephone-quality
recordings, and a Switchboard test set consisting of sentences
extracted from conversations over long-distance telephone lines.

We have shown that:

• Most of the performance loss in converting wide-band-
width models to telephone speech models is due to the loss
of information associated with the telephone bandwidth.

Training Data Word Error (%)

Credit Card 68.1

WSJ0 SI-Many Corpus 71.5

Credit Card Models Booted from WSJ0
Models

67.1

Table 4: Word Error for Spontaneous Conversational Speech
over Long Distance Telephone Lines

• It is possible to construct acoustic models for telephone
speech using a high-quality speech corpus with only a
minor increase in recognition word-error rate.

• A telephone-bandwidth system trained with high-quality
speech can outperform a system that is trained on tele-
phone speech even when tested on telephone speech.

• The variability introduced by the telephone handset does
not degrade speech recognition performance.

• Robust signal processing can be designed to maintain
speech recognition performance using wide-bandwidth
HMM models with a telephone-bandwidth test set.
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