nica microphone than for the Sennheiser microphone in the noisier ¢ Rolust sighal processing can be designed to maintain

environment. In the computer roomwronment, the performance speech recognition performance using wide-bandwidth
with the Audio-Technica microphone is almost indistinguishable HMM models with a telephone-bandwidth test set.
from that of the Sennheiser recording.
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4. WSJ EXPERIMENTAL RESULTS the telephone bandwidth. There is an increase in tre-error
rate of 66% when testing on Sennheiser recordings with a wide-

Another series ofx@eriments was performed on the WSJ Speech bandwidth analysis (5.8%) compared to testing with a telephone-

Corpus [15]. V& evaluated our system on the 5000+d-recogni- bandwidth analysis (9.6%).

tion closed-wcahilary speakrindependent speech-recognition . o .

tasks: Spok S5 Unknan Microphone, Spak S6: Knevn Micro- The loss in performance when switching from Sennheiser record-
phone, and SpakS7 Noisy Evironment. ings to telephone recordings is small in comparison to the loss of

information due to bandwidth restrictions. There is a 14% increase
The \ersion of the DECIPHER speakindependent continuous in the word error rate when testing on the Sennheiser recordings
speech recognition system used for thegeements is based on (9.6%) compared to testing on th&&T telephone recordings
a progressie-search stratyy [3] and continuous-densjtgenonic (10.9%).
HMMs [2]. Genderdependent models are used in all passes. Gen-
der selection uses the models with the higher recognitiefi-lik 4.1. Official Spole Results: Unknavn Micr ophone
hood.
The results in able 7 shwr the speech recognition performance
when the secondary microphone condition is umkman these
experiments, the ralst signal processing front end decreased the
word error rate from 17.2 to 13.1%.

The acoustic models used by the HMM system were trained with
37,000 sentences of Sennheiser data from 280 eppakset 6f
cially designated as the WSJ0+WSJ1 yrapealer baseline train-
ing. A 5,000 closed-acahulary back-of trigram language model
provided by M.I.T Lincoln Laboratory for the WSJ taskas used.

Genderdependent HMM acoustic models were used. Word Error

The front-end processingteacts one long spectragetor consist-

ing of the follaving six feature components: cepstrum, ggeand _ ) Secondary
their first and second order deatives. The dimensionality of this Experiment Sennheiser| Microphone
feature is 39 (13 * 3) for the wide-bandwidth spectral analysis and - -

27 (9 * 3) for the telephone-bandwidth spectral analysis. The ceps-| ~ Compensation Disabled 6.6 17.2

tral features are computed from an FFT filterbank, and subsequent .

cepstral-mean normalization on a sentence-by-sentence basis is Compensation Enabled 6.6 131

performed. Table 7: Word error rate with and without compensation on both

Before using wide-bandwidth comtedependent genonic HMMs, Sennheiser and secondary microphone data

a rolust estimate of the Sennheiser cepstral parameters is com-

puted using PQFThe rolust front-end analysis is designed for an  4.2. Official Spole Results: Knavn Micr ophone

unknovn microphone condition. The POF mapping algorithm

estimates are conditioned on the noisy cepstral ohiseng. Sepa- The results in @ble 8 shw no significant dierence in speech rec-
rate mappings are trained for each of the 14 microphones in the ognition performance between those obtained with an Audio-
baseline WSJ0+WSJ1 si_tr_s stereo training, and one mapping for Technica microphone and those obtained with the Sennheiser
the overall case of single nontelephone mapping. When trutlef  microphone. The raist front-end signal processing has demon-
no-transformation zero-mean cepstra are included, thi@snak  strated for the first time that one can achithe same performance
total of 15 estimated feature streams. These feature streams aravith a stand-mounted microphone as with a high-quality close-
computed on each teseveform, and the tefeature streams with talking microphone, all when trained on a high-quality speech cor-
the highest liklihoods (using a simpiéd HMM for scoring the pus.

features) areweraged together §p2). In all cases thérét and
second delta parameters are computed on these estimated cepstrat

values. Word Error
Secondary
Front-End Word Experiment Sennheiser| Microphone
Bandwidth | Signal Processing Test Set | Error (%)
Audio-Technica Recordings 5.9 6.4
Wide Standard Sennheiser| 5.8
Telephone Handset Recordings 7.2 19.1
Telephone Standard Sennheiser 9.6
Table 8: Word Error for both Sennheiser and Secondary Micro-
Telephone Standard Telephone 10.9 phone with Robst Signal Processing Front End
Wide Rolust POF15 | Telephone|  11.9 4.3. Official Spole Results: Noisy Erironment
Cepstral Mapping

Table 6: Performance on the Aug 1993 WSJ Sp@&6 deelop- The results in @ble 9 shw the performance when the recordings

3 . . are made in a noisy @nonment. The first noisy @ronment vas
ment test set for simultaneous Sennheiser/telephone recordings a computer room (@rage background noisevt of 58 to 59

The results in @ble 6 shw that most of the loss in performance  dBA), and the second noisy dronment vas a laboratory with
between recognizing on high-quality Sennheiser recordings and mail sorting equipment Yarage noise iel varied from 62 to 68
on local telephone speech is due to the loss of information outside dBA). The error rates are sigigiintly higher for the Audio-dch-



Acoustic Model Taining Test Set \Wird Error (%)
Training Front-End .

Data Bandwidth Sennheiser| Telephone
Sennheiser Wide 7.8 19.4
Sennheiser Telephone 9.0 9.7
Telephone Telephone 10.0 10.3

Table 3: Effect of different training and front-end bandwidth on
test set performance. Results a@dverror rate on the 400 Sen-
tence simultaneous test set.

We can see fromable 3 that there is a 15.4% decrease in perfor-

The diferences between theperimental conditions are small,
but the trends are dérent and depend on the mapping and the
corpus. These didrences depend on the similarities of théedif

ent microphones that are used in training conditions, and the rela-
tionship between the training and the testing conditions.

When the microphones are all similar (10 telephone mappings),
then aeraging the features of each mapping helps ingperfor-
mance. When the microphones aeeywdifferent (e.g., those in the
WSJ corpus),\&raging the features of each mapping has a mini-
mum when geraging tvo best (lilelihood) feature streams.

3.4. Multiple Micr ophones: Conditioning Feature

The net experiment waried the conditioning feature. The condi-
tioning feature is the featureetor used to dgide the space into
different acoustic gons. In each gion of the acoustic space a
different linear transformation is trained.

mance when using a telephone front end (7.8% increases to 9.0%The mapping approachas fxed: we used a single POF mapping
word error) and testing on Sennheiser data. This is due to the lossfor multiple telephone handsetsorrthis experiment we mapped

of information in reducing the bandwidth from 100-6400 Hz to
300-3300 Hz. Havever, when we are using a telephone front end,
there is only a 7.8% increase i error when testing on tele-

the cepstrum ector(cl-c12) and the cepstral erggr (c0). The
maximum delay of thdlfers was lept ixed atp=2, and the num-
ber of Gaussiansag 512. Thex@erimental @riable vas the fea-

phone speech compared to testing on Sennheiser speech (9.7%ure the estimates were conditioned ore ifed the follaving

versus 9.0%). This is a&wy surprising result, and we haxpected
a much bigger performance fdifence when Sennheiser models
are tested on telephone speech acoustics.

3.3. Multiple Micr ophones: Single or Multiple Mapping
The POF mapping algorithm can be used in a numberagbw

when the microphone is unkwa. Some of theseaviations are
shavn in Table 4.

Word
Experiment Error
Single Mapping Combining All 10elephones 9.4
in Training Data
Train 10 Mappings, One for Eaclel€phone; 9.2

Run 10 Recognizers iraRallel, each using Dif-
ferent Mapping; Select Recognizer with Highest

Probability
Train 10 Mappings, One for Eachh  Topl 9.3
Telephone; Run 10 Mappings in
Parallel and Aerage Features of|  T0P2 9.2
Best N Feature-Streams thatvda
Highest Likelihood Top3 8.9
Top4 8.7
Train 15 Mappings for WSJ Cor-|  Topl 9.8
pus; Run 15 Mappings iralallel
and Average Features of Best N|  T0P2 9.6
Feature-Streams that tHathe
Highest Lilelihood Top3 103
Top4 10.7

Table 4: Performance on the multiple-telephone handset test set
when mapping algorithm is used infdifent vays.

conditioning features:

» Cepstrum. Same conditioning feature used in the single
microphone gperiment(c0-c12).

» Spectral SNR This is an estimate of the instantaneous sig-
nal-to-noise ratio computed on the log-filterbank gper
domain. The &ctor size is 25.

» Cepstral SNR This feature is generated by applying the
discrete cosine transform (DCT) to the spectral SNR. The
transformation reduces the dimensionality of thetor
from 25 to 12 elements.

The results are sk in Table 5. The baseline result is a 19.4%
word error rate. This result is achéel when the same wide-band
front end is used for training the models with clean data and for
recognition using telephone data. When a telephone front end [1]
is used for training and testing, the error decreases to 9.7%. The
disadwantage of using this approach is that the acoustic models of
the recognizer hee to be reestimated. Mever, the POF-based
front end operates on the clean models and results in better perfor-
mance. The cepstral SNR produces the best result (8.7&b). W
this conditioning feature we combine théeets of noise and spec-

tral shape in a compact representation.

Word
Experiment Error (%) |Error Ratio
Wide-band front-end 19.4 2.49
Telephone-bandwidth front-end 9.7 1.24
Mapping with cepstrum 9.4 1.20
Mapping with spectral SNR 8.9 1.14
Mapping with cepstral SNR 8.7 111

Table 5: Performance for the multiple-telephone handset test
set when arying the conditioning feature.



is a probabilistic nonsingular auto-correlation matrix, and
N-1-p

IR Y AN 6)
n=p

is a probabilistic cross-correlation matrix.

The algorithm can be completely trained without supervision and
requires no additional information other than the simultaneous
waveforms.

The run-time estimate of the clean featueetar can be computed
by integrating the outputs of all the filters as folla

1-1 T Bl—l T 0
= 3 WPl = 0 W, p(gi|zn)§vn @
i=0 0=0 0

3. EXPERIMENTS

A series of gperiments shew how the mapping algorithm can be
used in a continuous speech recognizer across acoustioren
ments. In all of thexperiments the recognizer models are trained
with data recorded with high-quality microphones and digitally
sampled at 16,000 Hz. The analysis frame rate is 100 Hz.

The tables bele shav three types of performance indicators:

« Relative distortion measure. For a gven component of a fea-
ture vector we define the relaé distortion between the
clean and noisy data as folle:

El(x-)7]
var(x)

« Wbrd recognition error.

d ®

« Error ratio. The error ratio is gen by En/ EC where
En
clean condition, and Ec is the vord recognition error of
the test-clean/train-clean condition.

is the vord recognition error for the test-noisy/train-

3.1. Single Miciophone

To test the POF algorithm on a singleg&tracoustic enronment

we used the BRPA Wall Street Journal database [15] on SRI’
DECIPHER™ phonetically tied-mixture speech recognition sys-
tem [2]. The signal processing consisted of a filterbank-based front
end that generated six feature streams: cepgtristil2), cepstral
enegy (c0), and their first- and second-order dgatives. Cepstral-
mean normalization [16] &s used to equalize the channek W

used simultaneous recordings of high-quality speech (Sennheiser

414 head-mounted microphone with a noise-canceling element)
along with speech recorded by a standard srehone (A&T

720) and transmittedver local telephone lines. &\will refer to

this stereo data aean andnoisy speech, respewgly. The mod-

els of the recognizer were trained using 42 male WSJO training

The models of the mapping algorithm were trained using 240
development training sentences recorded by three gpsakhe

test set consisted of 100 sentences (not included in the training set)
recorded by the same three spaak

In this experiment we mapped twof the six features: the cep-
strum(cl-c12) and the cepstral erggr(c0) separatelyThe dena-
tives were computed from the mappezttors of the cepstral
features. Br the conditioning feature we used a 13-dimensional
cepstral ector(c0-c12) modeled with 512 Gaussians with diago-
nal covariance matrices. The results arevshan Table 2.

Average Recognition
Filter Coeficients |Distortion |Error (%) |Error Ratio
No mapping 0.72 27.6 2.46
Aio=l, b 0.62 18.1 1.62
Ao, b; 0.57 17.0 1.52
A1 A1, by 0.51 17.3 1.54
A2 A2, b 0.50 16.4 1.46
A 3. A3, b 0.49 15.9 1.42
A4 A 4. bi 0.49 16.1 1.44

Table 2: Performance of the POF algorithm forfdient num-

ber of filter codficients. The number of Gaussian diatitibns is

512 per feature and the conditioning feature is a 13-dimensional
cepstral ector

The baselinexperiment produced aavd error rate of 27.6% on

the noisy test set, that is, 2.46 times the error obtained when using
the clean data channel. A 34% impement in recognition perfor-
mance vas obtained when using only the additfilter coeficient

b;. (Recognition error goes dm to 18.1%.) The best result

(15.9% recognition error) &s obtained for the conditigee3, in
which six neighboring noisy frames are being used to estimate the
feature ector for the current frame. The correlation between the
average relatie distortion between the six clean and noisy features
and the recogpnition error is 0.9.

3.2. ATIS Simultaneous Copus

To test the performance of the POF algorithm on multiple micro-
phones we used SRIstereo-AlS database. (See [1] for details.)

A corpus of both training and testing speedaswollected using
simultaneous recordings made from subjects wearing a Sennheiser
HMD 414 microphone and holding a telephone handset. The
speech from the telephone handsa$wansmittedwer local tele-
phone lines during data collectiorerT diferent telephone hand-
sets were used.eh male speaks were designated as training
spealers, and three male speak were designated as the test set.
The training set consisted of 3,000 simultaneous recordings of
Sennheiser microphone and telephone speech. The test set con-
sisted of 400 simultaneous recordings of Sennheiser and telephone
speech. The results obtained with this pilot corpus are/shm

Table 3.

talkers (3500 sentences) recorded with a Sennheiser microphone.



* The mapping algorithms described in this paper are able to
incorporate maypieces of information that fa@ been tradi-
tionally difficult to incorporate into HMM models and into
adaptation algorithms. These include obagons that span
across seeral frames and the correlation of the state features
with global characteristics of the speecéveform.

These tw techniques are not mutuallyatusive and can be used
together to achiee rolust speech recognition performance. The
boundary between thesedwechniques can be blurred when the
mapping algorithm is dependent on the speech recogsizer’
hypothesis.

2. THE POF ALGORITHM

The mapping algorithm is based on a probabilistic piessenon-
linear transformation of the acoustic space that wePcaliabilis-

tic Optimum Filtering (POF) Let us assume that the recognizer is
trained with data recorded with a high-quality close-talking micro-
phone (clean speech), and the test data is acquired ifeeedif
acoustic emronment (noisy speech). Our goal is to estimate a

clean feature ector >“<n given its corresponding noisy feature
Yn wheren is the frame inde (A list of symbols is shan in

Table 1.)To estimate the clearegtor we ectorquantize the clean
feature space ihregions using the generalized i algorithm
[14]. Each VQ rgion is assigned a multidimensional tragsal
filter (see Figure 1). The error between the cleactar and the

Figure 1: Multi-dimensional transvsal filter for cluster.

estimated gctors produced by theh filter is given by

€i = Xn"%ni T *n i 'n

@
wheree_. is the error associated withgieni, W. is the filter

coeficient matrix, andYn is the tapped-delay line of the noisy
vectors Expanding these matrices we get

Wi:[ﬁfﬁ“.%riALO&JJ”ALpﬂ )

T_|T T T.T T
Y, = 3
n [yn—p“' Yn—1Yn Yn+1 yn+p1 3)

The conditional error in eachgien is defined as
N-1-p
2
B = > Jenf Paiizy @
n=p

where p(gi|zn) is the probability that the clearestor X
belongs to rgion 9i given an arbitrary conditional noisy feature
vector z, . Note that the conditioning noisy feature can bg an

acoustic ector generated from the noisy speech frarne ekam-
ple, it may include an estimate of the SNR, @yecepstral
enegy, cepstrum, and so forth.

The conditional probability density functqu(zn|gi) is modeled

as a mixture of Gaussian distrittions. Each Gaussian distib
tion models a VQ mgion. The parameters of the disuiions
(mean ectors and ogariance matrices) are estimated using the
corresponding z,, vectors associated with thagien. The poste-

rior probabilities p(gilzn) are computed using Bayes’ theorem

and the mixture weights P(g;) are estimated using the relati

number of training cleaneetors that are assigned to aegi VQ
region.

Symbol | Dimension Description

n 1 frame inde

i 1 region inde

L 1 feature ector size

M 1 conditioning feature ector size

N 1 number of training frames

| 1 number of VQ rgions

p 1 maximum filter delay

€ni Lx1 estimation error &ctor

X Lx1 clean feature ector

)A(n Lx1 estimate of clean featureestor

Yn Lx1 noisy feature gctor

Z, M x1 conditioning noisy featureector

Hi M x1 mean ‘ector of @ussian

Zi M x M covariance matrix of gussian

W, (2p+1)L+1 x L |trans\ersal filter codfcient matrix

Yn (2p+1)L+1x 1 [tap input ector

Ak LxL multiplicative tap matrix

bi Lx1 additive tap matrix

Ri (2p+1)L+1x |auto-correlation matrix
(2p+1)L+1

r. (2p+1)L+1 x L |cross-correlation matrix

1
Table 1: List of symbols

To compute the optimunilters in the mean-squared error sense,
we minimize the conditional error in each V@i@n. The mini-
mum mean-squared errogator is obtained by taking the gradient
of E; defned in Eq. (4) with respect to thi#dr coeficient matrix
and equating all the elements of the gradient matrix to zero. As a
result, the optimumilter coeficient matrix has the form,

w; = Ri_lri where

N-1-p .
Ri= > YnYnPEilz) ®)
n=p
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ABSTRACT

A new mapping algorithm for speech recognition relates the fea-
tures of simultaneous recordings of clean and noisy speech. The
model is a pieagise nonlinear transformation applied to the noisy
speech feature. The transformation is a set of multidimensional
linear least-squaredlters whose outputs are combined using a
conditional Gaussian model. The algorithrasmested using
SRI's DECIPHER™ speech recognition system [1-5]. Experi-
mental results sl how the mapping is used to reduce recogni-

tion errors when the training and testing acoustérenments do
not match.

1. INTRODUCTION

In mary practical situations an automatic speech recognizer has to

operate in seeral diferent ut well-defned acoustic eriron-

ments. Br example, the same recognition task may be imple-
mented using diérent microphones or transmission channels. In
this situation it may not be practical to recollect a speech corpus to

train the acoustic models of the recogniZeralleviate this prob-

lem, we propose an algorithm that maps speech features between
two acoustic spaces. The models of the mapping algorithm are
trained using a small database recorded simultaneously in both

ervironments.

In the case of steady-state addithomogenous noise, we can
derive a MMSE estimate of the clean speech filterbank-logggner
features using a model forudhe features change in the presence

The MMSE estimate of the clean speech features in noise is
trained eperimentally rather than with a model as in [6, 7].

Several frames are joined together similar to [13].

The conditional PDF is based on a generic noisy feature not
necessarily related to the feature that we are trying to esti-
mate. er example, we could condition the estimate of the
cepstral engy on the instantaneous spectral SNtar

Multidimensional least-squares filters are used for the map-
ping transformation. Thisxgloits the correlation of the fea-
tures wer time and among components of the spectral
features at the same time.

Linear transformations are combined together without hard
decisions.

* All delta parameters are computed after mapping the cep-

strum and cepstral erggr

« The mapping parameters are trained using stereo recordings

with two different microphones. Once trained, the mapping
parameters are fxl.

» The algorithm can either map noisy speech features to clean

1.2.

of this noise [6-7]. In these algorithms, the estimated speech spec- The

trum is a function of the global spectral signal-to-noise ratio

(SNR), the instantaneous spectral SNR, and tieeadl spectral

shape of the speech signal.Wéwer, after studying simultaneous

recordings made with twmicrophones, we belie that the rela-
tionship between the twsimultaneous features is nonlinéak

therefore propose to use a pietee-nonlinear model to relate the

two feature spaces.
1.1. Related Wrk on Feature Mapping

Several algorithms in the literature Y@ focused onxperimen-

tally training a mapping between the noisy features and the clean

features [8-13]. The proposed algorithmfeig from preious
algorithms in seeral ways:

features during training, or clean features to noisy features
during recognition.

Related Wrk on Adaptation

algorithm used to map the incoming features into a more

robust representation has some similarities twkwvon model
adaptation. Some of the highvld differences between hidden
Markov model (HMM) adaptation and the mapping algorithms
proposed in this paper are:

The mapping algorithm erks by primarily correcting shifts
in the mean of the feature set that are correlated with
obsenrable information. Adapting HMM model parameters
has certain dgees of freedom that the mapping algorithm
does not hee- for xample the ability to change stai@riv
ances, and mixture weights.

Two HMM states that hee identical probability distril-
tions and are not tied canveedifferent distrilutions after
adaptation. These disttiions cannot be dérentiated by
mapping features.



