
nica microphone than for the Sennheiser microphone in the noisier
environment. In the computer room environment, the performance
with the Audio-Technica microphone is almost indistinguishable
from that of the Sennheiser recording.

5. CONCLUSIONS
We have presented a feature-mapping algorithm capable of
exploiting nonlinear relations between two acoustic spaces. We
have shown how to improve the performance of the recognizer in
the presence of a noisy signal by using a small database with
simultaneous recordings in the clean and noisy acoustic environ-
ments.

We have shown that

• There is no significant difference in speech recognition per-
formance between those obtained with an Audio-Technica
microphone and those obtained with a Sennheiser micro-
phone. There is no significant performance degradation in a
quiet environment and only a slight degradation in low-noise
environments (~59 dBA).

• Multidimensional least-squares filters can be successfully
used to exploit the correlation of the features over time and
among components of the spectral features at the same time.
These filters can be conditioned on both local and global
spectral information to improve robust recognition perfor-
mance.

• Most of the performance loss in converting wide-bandwidth
models to telephone speech models is due to the loss of
information associated with the telephone bandwidth.

• It is possible to construct acoustic models for telephone
speech using a high-quality speech corpus with only a minor
increase in recognition word error rate.

• A telephone-bandwidth system trained with high-quality
speech can outperform a system that is trained on telephone
speech even when tested on telephone speech.

• The variability introduced by the telephone handset does not
degrade speech recognition performance.

• Robust signal processing can be designed to maintain
speech recognition performance using wide-bandwidth
HMM models with a telephone-bandwidth test set.
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Experiment

Word Error

Sennheiser
Secondary

Microphone

Audio-Technica
Recordings

Env 1 6.3 8.5

Env 2 9.1 17.4

Telephone Handset
Recordings

Env 1 8.4 29.1

Env 2 8.3 28.8

Table 9: Word Error for both Sennheiser and Secondary Micro-
phone with Robust Signal Processing Front End when Recorded in
Two Noisy Environments



4. WSJ EXPERIMENTAL RESULTS

Another series of experiments was performed on the WSJ Speech
Corpus [15]. We evaluated our system on the 5000-word-recogni-
tion closed-vocabulary speaker-independent speech-recognition
tasks: Spoke S5 Unknown Microphone, Spoke S6: Known Micro-
phone, and Spoke S7 Noisy Environment.

The version of the DECIPHER speaker-independent continuous
speech recognition system used for these experiments is based on
a progressive-search strategy [3] and continuous-density, genonic
HMMs [2]. Gender-dependent models are used in all passes. Gen-
der selection uses the models with the higher recognition likeli-
hood.

The acoustic models used by the HMM system were trained with
37,000 sentences of Sennheiser data from 280 speakers, a set offi-
cially designated as the WSJ0+WSJ1 many-speaker baseline train-
ing. A 5,000 closed-vocabulary back-off trigram language model
provided by M.I.T. Lincoln Laboratory for the WSJ task was used.
Gender-dependent HMM acoustic models were used.

The front-end processing extracts one long spectral vector consist-
ing of the following six feature components: cepstrum, energy, and
their first and second order derivatives. The dimensionality of this
feature is 39 (13 * 3) for the wide-bandwidth spectral analysis and
27 (9 * 3) for the telephone-bandwidth spectral analysis. The ceps-
tral features are computed from an FFT filterbank, and subsequent
cepstral-mean normalization on a sentence-by-sentence basis is
performed.

Before using wide-bandwidth context-dependent genonic HMMs,
a robust estimate of the Sennheiser cepstral parameters is com-
puted using POF. The robust front-end analysis is designed for an
unknown microphone condition. The POF mapping algorithm
estimates are conditioned on the noisy cepstral observations. Sepa-
rate mappings are trained for each of the 14 microphones in the
baseline WSJ0+WSJ1 si_tr_s stereo training, and one mapping for
the overall case of single nontelephone mapping. When the default
no-transformation zero-mean cepstra are included, this makes a
total of 15 estimated feature streams. These feature streams are
computed on each test waveform, and the two feature streams with
the highest likelihoods (using a simplified HMM for scoring the
features) are averaged together (Top2). In all cases the first and
second delta parameters are computed on these estimated cepstral
values.

The results in Table 6 show that most of the loss in performance
between recognizing on high-quality Sennheiser recordings and
on local telephone speech is due to the loss of information outside

the telephone bandwidth. There is an increase in the word-error
rate of 66% when testing on Sennheiser recordings with a wide-
bandwidth analysis (5.8%) compared to testing with a telephone-
bandwidth analysis (9.6%).

The loss in performance when switching from Sennheiser record-
ings to telephone recordings is small in comparison to the loss of
information due to bandwidth restrictions. There is a 14% increase
in the word error rate when testing on the Sennheiser recordings
(9.6%) compared to testing on the AT&T telephone recordings
(10.9%).

4.1. Official Spoke Results: Unknown Micr ophone

The results in Table 7 show the speech recognition performance
when the secondary microphone condition is unknown. In these
experiments, the robust signal processing front end decreased the
word error rate from 17.2 to 13.1%.

4.2. Official Spoke Results: Known Micr ophone

The results in Table 8 show no significant difference in speech rec-
ognition performance between those obtained with an Audio-
Technica microphone and those obtained with the Sennheiser
microphone. The robust front-end signal processing has demon-
strated for the first time that one can achieve the same performance
with a stand-mounted microphone as with a high-quality close-
talking microphone, all when trained on a high-quality speech cor-
pus.

4.3. Official Spoke Results: Noisy Envir onment

The results in Table 9 show the performance when the recordings
are made in a noisy environment. The first noisy environment was
a computer room (average background noise level of 58 to 59
dBA), and the second noisy environment was a laboratory with
mail sorting equipment (average noise level varied from 62 to 68
dBA). The error rates are significantly higher for the Audio-Tech-

Front-End
Bandwidth Signal Processing Test Set

Word
Error (%)

Wide Standard Sennheiser 5.8

Telephone Standard Sennheiser 9.6

Telephone Standard Telephone 10.9

Wide Robust POF15
Cepstral Mapping

Telephone 11.9

Table 6: Performance on the Aug 1993 WSJ Spoke S6 develop-
ment test set for simultaneous Sennheiser/telephone recordings

Experiment

Word Error

Sennheiser
Secondary

Microphone

Compensation Disabled 6.6 17.2

Compensation Enabled 6.6 13.1

Table 7: Word error rate with and without compensation on both
Sennheiser and secondary microphone data

Experiment

Word Error

Sennheiser
Secondary

Microphone

Audio-Technica Recordings 5.9 6.4

Telephone Handset Recordings 7.2 19.1

Table 8: Word Error for both Sennheiser and Secondary Micro-
phone with Robust Signal Processing Front End
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We can see from Table 3 that there is a 15.4% decrease in perfor-
mance when using a telephone front end (7.8% increases to 9.0%
word error) and testing on Sennheiser data. This is due to the loss
of information in reducing the bandwidth from 100-6400 Hz to
300-3300 Hz. However, when we are using a telephone front end,
there is only a 7.8% increase in word error when testing on tele-
phone speech compared to testing on Sennheiser speech (9.7%
versus 9.0%). This is a very surprising result, and we had expected
a much bigger performance difference when Sennheiser models
are tested on telephone speech acoustics.

3.3. Multiple Micr ophones: Single or Multiple Mapping

The POF mapping algorithm can be used in a number of ways
when the microphone is unknown. Some of these variations are
shown in Table 4.

The differences between the experimental conditions are small,
but the trends are different and depend on the mapping and the
corpus. These differences depend on the similarities of the differ-
ent microphones that are used in training conditions, and the rela-
tionship between the training and the testing conditions.

When the microphones are all similar (10 telephone mappings),
then averaging the features of each mapping helps improve perfor-
mance. When the microphones are very different (e.g., those in the
WSJ corpus), averaging the features of each mapping has a mini-
mum when averaging two best (likelihood) feature streams.

3.4. Multiple Micr ophones: Conditioning Feature

The next experiment varied the conditioning feature. The condi-
tioning feature is the feature vector used to divide the space into
different acoustic regions. In each region of the acoustic space a
different linear transformation is trained.

The mapping approach was fixed: we used a single POF mapping
for multiple telephone handsets. For this experiment we mapped
the cepstrum vector(c1-c12) and the cepstral energy (c0). The
maximum delay of the filters was kept fixed atp=2, and the num-
ber of Gaussians was 512. The experimental variable was the fea-
ture the estimates were conditioned on. We tried the following
conditioning features:

• Cepstrum. Same conditioning feature used in the single
microphone experiment(c0-c12).

• Spectral SNR. This is an estimate of the instantaneous sig-
nal-to-noise ratio computed on the log-filterbank energy
domain. The vector size is 25.

• Cepstral SNR. This feature is generated by applying the
discrete cosine transform (DCT) to the spectral SNR. The
transformation reduces the dimensionality of the vector
from 25 to 12 elements.

The results are shown in Table 5. The baseline result is a 19.4%
word error rate. This result is achieved when the same wide-band
front end is used for training the models with clean data and for
recognition using telephone data. When a telephone front end [1]
is used for training and testing, the error decreases to 9.7%. The
disadvantage of using this approach is that the acoustic models of
the recognizer have to be reestimated. However, the POF-based
front end operates on the clean models and results in better perfor-
mance. The cepstral SNR produces the best result (8.7%). With
this conditioning feature we combine the effects of noise and spec-
tral shape in a compact representation.

Acoustic Model Training Test Set Word Error (%)

Training
Data

Front-End
Bandwidth

Sennheiser Telephone

Sennheiser Wide 7.8 19.4

Sennheiser Telephone 9.0 9.7

Telephone Telephone 10.0 10.3

Table 3: Effect of different training and front-end bandwidth on
test set performance. Results are word error rate on the 400 Sen-
tence simultaneous test set.

Experiment
Word
Error

Single Mapping Combining All 10 Telephones
in Training Data

9.4

Train 10 Mappings, One for Each Telephone;
Run 10 Recognizers in Parallel, each using Dif-
ferent Mapping; Select Recognizer with Highest

Probability

9.2

Train 10 Mappings, One for Each
Telephone; Run 10 Mappings in
Parallel and Average Features of

Best N Feature-Streams that Have
Highest Likelihood

Top1 9.3

Top2 9.2

Top3 8.9

Top4 8.7

Train 15 Mappings for WSJ Cor-
pus; Run 15 Mappings in Parallel
and Average Features of Best N
Feature-Streams that Have the

Highest Likelihood

Top1 9.8

Top2 9.6

Top3 10.3

Top4 10.7

Table 4: Performance on the multiple-telephone handset test set
when mapping algorithm is used in different ways.

Experiment
Word
Error (%) Error Ratio

Wide-band front-end 19.4 2.49

Telephone-bandwidth front-end 9.7 1.24

Mapping with cepstrum 9.4 1.20

Mapping with spectral SNR 8.9 1.14

Mapping with cepstral SNR 8.7 1.11

Table 5: Performance for the multiple-telephone handset test
set when varying the conditioning feature.



is a probabilistic nonsingular auto-correlation matrix, and

(6)

is a probabilistic cross-correlation matrix.

The algorithm can be completely trained without supervision and
requires no additional information other than the simultaneous
waveforms.

The run-time estimate of the clean feature vector can be computed
by integrating the outputs of all the filters as follows:

(7)

3. EXPERIMENTS

A series of experiments show how the mapping algorithm can be
used in a continuous speech recognizer across acoustic environ-
ments. In all of the experiments the recognizer models are trained
with data recorded with high-quality microphones and digitally
sampled at 16,000 Hz. The analysis frame rate is 100 Hz.

The tables below show three types of performance indicators:

• Relative distortion measure. For a given component of a fea-
ture vector we define the relative distortion between the
clean and noisy data as follows:

(8)

• Word recognition error.

• Error ratio. The error ratio is given by  where

 is the word recognition error for the test-noisy/train-

clean condition, and  is the word recognition error of

the test-clean/train-clean condition.

3.1. Single Microphone

To test the POF algorithm on a single target acoustic environment
we used the DARPA Wall Street Journal database [15] on SRI’s
DECIPHER™ phonetically tied-mixture speech recognition sys-
tem [2]. The signal processing consisted of a filterbank-based front
end that generated six feature streams: cepstrum(c1-c12), cepstral
energy (c0), and their first- and second-order derivatives. Cepstral-
mean normalization [16] was used to equalize the channel. We
used simultaneous recordings of high-quality speech (Sennheiser
414 head-mounted microphone with a noise-canceling element)
along with speech recorded by a standard speaker phone (AT&T
720) and transmitted over local telephone lines. We will refer to
this stereo data asclean andnoisy speech, respectively. The mod-
els of the recognizer were trained using 42 male WSJ0 training
talkers (3500 sentences) recorded with a Sennheiser microphone.

The models of the mapping algorithm were trained using 240
development training sentences recorded by three speakers. The
test set consisted of 100 sentences (not included in the training set)
recorded by the same three speakers.

In this experiment we mapped two of the six features: the cep-
strum(c1-c12) and the cepstral energy (c0) separately. The deriva-
tives were computed from the mapped vectors of the cepstral
features. For the conditioning feature we used a 13-dimensional
cepstral vector(c0-c12) modeled with 512 Gaussians with diago-
nal covariance matrices. The results are shown in Table 2.

The baseline experiment produced a word error rate of 27.6% on
the noisy test set, that is, 2.46 times the error obtained when using
the clean data channel. A 34% improvement in recognition perfor-
mance was obtained when using only the additive filter coefficient
bi. (Recognition error goes down to 18.1%.) The best result
(15.9% recognition error) was obtained for the conditionp=3, in
which six neighboring noisy frames are being used to estimate the
feature vector for the current frame. The correlation between the
average relative distortion between the six clean and noisy features
and the recognition error is 0.9.

3.2. ATIS Simultaneous Corpus

To test the performance of the POF algorithm on multiple micro-
phones we used SRI’s stereo-ATIS database. (See [1] for details.)
A corpus of both training and testing speech was collected using
simultaneous recordings made from subjects wearing a Sennheiser
HMD 414 microphone and holding a telephone handset. The
speech from the telephone handset was transmitted over local tele-
phone lines during data collection. Ten different telephone hand-
sets were used. Ten male speakers were designated as training
speakers, and three male speakers were designated as the test set.
The training set consisted of 3,000 simultaneous recordings of
Sennheiser microphone and telephone speech. The test set con-
sisted of 400 simultaneous recordings of Sennheiser and telephone
speech. The results obtained with this pilot corpus are shown in
Table 3.
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Filter Coefficients
Average
Distortion

Recognition
Error (%) Error Ratio

No mapping 0.72 27.6 2.46

A i,0=I , bi 0.62 18.1 1.62

A i,0 , bi 0.57 17.0 1.52

Ai,-1 ,.., Ai,-1 , bi 0.51 17.3 1.54

Ai,-2 ,.., Ai,-2 , bi 0.50 16.4 1.46

Ai,-3 ,.., Ai,-3 , bi 0.49 15.9 1.42

Ai,-4 ,.., Ai,-4 , bi 0.49 16.1 1.44

Table 2: Performance of the POF algorithm for different num-
ber of filter coefficients. The number of Gaussian distributions is
512 per feature and the conditioning feature is a 13-dimensional
cepstral vector.



• The mapping algorithms described in this paper are able to
incorporate many pieces of information that have been tradi-
tionally difficult to incorporate into HMM models and into
adaptation algorithms. These include observations that span
across several frames and the correlation of the state features
with global characteristics of the speech waveform.

These two techniques are not mutually exclusive and can be used
together to achieve robust speech recognition performance. The
boundary between these two techniques can be blurred when the
mapping algorithm is dependent on the speech recognizer’s
hypothesis.

2. THE POF ALGORITHM

The mapping algorithm is based on a probabilistic piecewise-non-
linear transformation of the acoustic space that we callProbabilis-
tic Optimum Filtering (POF). Let us assume that the recognizer is
trained with data recorded with a high-quality close-talking micro-
phone (clean speech), and the test data is acquired in a different
acoustic environment (noisy speech). Our goal is to estimate a

clean feature vector  given its corresponding noisy feature

 wheren is the frame index. (A list of symbols is shown in

Table 1.)To estimate the clean vector we vector-quantize the clean
feature space inI regions using the generalized Lloyd algorithm
[14]. Each VQ region is assigned a multidimensional transversal
filter (see Figure 1). The error between the clean vector and the

estimated vectors produced by thei-th filter is given by

(1)

where  is the error associated with region i, is the filter
coefficient matrix, and  is the tapped-delay line of the noisy
vectors.Expanding these matrices we get

(2)

(3)

The conditional error in each region is defined as

(4)

where  is the probability that the clean vector

belongs to region  given an arbitrary conditional noisy feature

vector . Note that the conditioning noisy feature can be any

acoustic vector generated from the noisy speech frame. For exam-
ple, it may include an estimate of the SNR, energy, cepstral
energy, cepstrum, and so forth.

The conditional probability density function  is modeled

as a mixture ofI Gaussian distributions. Each Gaussian distribu-
tion models a VQ region. The parameters of the distributions
(mean vectors and covariance matrices) are estimated using the
corresponding  vectors associated with that region. The poste-

rior probabilities  are computed using Bayes’ theorem

and the mixture weights  are estimated using the relative

number of training clean vectors that are assigned to a given VQ
region.

To compute the optimum filters in the mean-squared error sense,
we minimize the conditional error in each VQ region. The mini-
mum mean-squared error vector is obtained by taking the gradient
of Ei defined in Eq. (4) with respect to the filter coefficient matrix
and equating all the elements of the gradient matrix to zero. As a
result, the optimum filter coefficient matrix has the form,

 where

(5)

Figure 1: Multi-dimensional transversal filter for clusteri.
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Symbol Dimension Description

n 1 frame index

i 1 region index

L 1 feature vector size

M 1 conditioning feature vector size

N 1 number of training frames

I 1 number of VQ regions

p 1 maximum filter delay

L × 1 estimation error vector

L × 1 clean feature vector

L × 1 estimate of clean feature vector

L × 1 noisy feature vector

M × 1 conditioning noisy feature vector

M × 1 mean vector of gaussiani

M × M covariance matrix of gaussiani

(2p+1)L+1 × L transversal filter coefficient matrix

(2p+1)L+1 × 1 tap input vector

L × L multiplicative tap matrix

L × 1 additive tap matrix

(2p+1)L+1 ×
(2p+1)L+1

auto-correlation matrix

(2p+1)L+1 × L cross-correlation matrix

Table 1: List of symbols
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ABSTRACT

A new mapping algorithm for speech recognition relates the fea-
tures of simultaneous recordings of clean and noisy speech. The
model is a piecewise nonlinear transformation applied to the noisy
speech feature. The transformation is a set of multidimensional
linear least-squares filters whose outputs are combined using a
conditional Gaussian model. The algorithm was tested using
SRI’s DECIPHER™ speech recognition system [1-5]. Experi-
mental results show how the mapping is used to reduce recogni-
tion errors when the training and testing acoustic environments do
not match.

1. INTRODUCTION

In many practical situations an automatic speech recognizer has to
operate in several different but well-defined acoustic environ-
ments. For example, the same recognition task may be imple-
mented using different microphones or transmission channels. In
this situation it may not be practical to recollect a speech corpus to
train the acoustic models of the recognizer. To alleviate this prob-
lem, we propose an algorithm that maps speech features between
two acoustic spaces. The models of the mapping algorithm are
trained using a small database recorded simultaneously in both
environments.

In the case of steady-state additive homogenous noise, we can
derive a MMSE estimate of the clean speech filterbank-log energy
features using a model for how the features change in the presence
of this noise [6-7]. In these algorithms, the estimated speech spec-
trum is a function of the global spectral signal-to-noise ratio
(SNR), the instantaneous spectral SNR, and the overall spectral
shape of the speech signal. However, after studying simultaneous
recordings made with two microphones, we believe that the rela-
tionship between the two simultaneous features is nonlinear. We
therefore propose to use a piecewise-nonlinear model to relate the
two feature spaces.

1.1. Related Work on Feature Mapping

Several algorithms in the literature have focused on experimen-
tally training a mapping between the noisy features and the clean
features [8-13]. The proposed algorithm differs from previous
algorithms in several ways:

• The MMSE estimate of the clean speech features in noise is
trained experimentally rather than with a model as in [6, 7].

• Several frames are joined together similar to [13].

• The conditional PDF is based on a generic noisy feature not
necessarily related to the feature that we are trying to esti-
mate. For example, we could condition the estimate of the
cepstral energy on the instantaneous spectral SNR vector.

• Multidimensional least-squares filters are used for the map-
ping transformation. This exploits the correlation of the fea-
tures over time and among components of the spectral
features at the same time.

• Linear transformations are combined together without hard
decisions.

• All delta parameters are computed after mapping the cep-
strum and cepstral energy.

• The mapping parameters are trained using stereo recordings
with two different microphones. Once trained, the mapping
parameters are fixed.

• The algorithm can either map noisy speech features to clean
features during training, or clean features to noisy features
during recognition.

1.2. Related Work on Adaptation

The algorithm used to map the incoming features into a more
robust representation has some similarities to work on model
adaptation. Some of the high-level differences between hidden
Markov model (HMM) adaptation and the mapping algorithms
proposed in this paper are:

• The mapping algorithm works by primarily correcting shifts
in the mean of the feature set that are correlated with
observable information. Adapting HMM model parameters
has certain degrees of freedom that the mapping algorithm
does not have- for example the ability to change state vari-
ances, and mixture weights.

• Two HMM states that have identical probability distribu-
tions and are not tied can have different distributions after
adaptation. These distributions cannot be differentiated by
mapping features.
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