
HTTP://WWW.SPEECH.SRI.COM/DEMOS/ATIS.HTML

Luc JULIA
Leonardo NEUMEYER

Mehdi CHARAFEDDINE

SRI International
STAR Laboratory

333 Ravenswood Avenue
Menlo Park, California 94025

{julia,leo,mehdi}@speech.sri.com

Adam CHEYER
John DOWDING

SRI International
Artificial Intelligence Center
333 Ravenswood Avenue

Menlo Park, California 94025
{cheyer,dowding}@ai.sri.com

Abstract
This paper presents a speech-enabled WWW
demonstration based on the Air Travel
Information System (ATIS) domain. SRI’s
speech recognition technology and natural
language understanding are fully integrated in
a Java application using the DECIPHER™
speech recognition system and the Open
Agent Architecture™.

Introduction

The WWW, especially in conjunction with Java,
offers the potential of an unprecedented degree of
platform independence, and consequent enormous
reduction in costs to distribute, port, and maintain
software, data resources, and updates. Speech-
enabled WWW interactions vastly increase
accessibili ty to the WWW, including access from
the nearest telephone (which may be in your
pocket), and access by disabled populations, or
whenever typing and mouse interactions are
inconvenient. Our first demonstration of speech-
enabled WWW access is based on the Air Travel
Information System (ATIS). This system,
combining speech recognition and natural
language (NL) understanding technology, is
capable of responding to spoken queries in the
domain of air travel.

System Overview

The ATIS demonstration can be found at
HTTP://WWW.SPEECH.SRI.COM/DEMOS/ATIS.HTML.
This web site presents instructions for running the

demonstration, and gives a telephone number to
call; since no standard yet exists for recording
sound from a Web browser, the telephone was
chosen as the best means of allowing a large user
population to provide speech input to the system.

Before beginning the demonstration, the user can
determine whether the system is already in use by
pushing a button in the browser. If asked to
proceed (i.e., telephone line is not busy), the user
calls the given number and is asked to type an
identification sequence to ensure that the call
corresponds to the current ATIS session. Once
this security step is completed, and a disclaimer
message (saying that the session may be
recorded) is approved, the user is presented with
the main screen of the application, as shown in
Figure 1. An animation ill ustrates which button to
push to begin entering spoken queries.

A typical first spoken query might be: “Show me
all flights from Boston to San Francisco on
Monday afternoon” . While the speech engine is
working, the user is apprised of progress through
partial recognition results displayed as they are
calculated. Once the recognition process has
completed, a paraphrase of what the system
understood is shown on the line following the
recognized string. This juxtaposition of
recognized words and inferred meaning is useful,
as the natural language process often can
overcome misrecognitions and correctly
determine the appropriate intention from vague or

nonsyntactic queries. After interpretation and
retrieval, the results of the request are shown in a
table listing the set of attribute values (e.g.,
departure time, arrival time, flight number) that
solve the query. The user then has the
opportunity to narrow the search, refining the
search criteria of the previous query: “Which is
the cheapest flight?” . Automatic detection of
context switches is one of the difficult problems
addressed by the NL component.

Figure 1: ATIS screen

A user who has defined an itinerary can ask for a
map where the selected cities are hyperlinked to
Web sites containing information about them.
Other on-line help is available, including a list of
the 46 U.S. cities that the user can talk about and
a general guide for entering acceptable queries.

Open Agent Architecture

The Open Agent Architecture™ (OAA) is a
framework for constructing applications through
the process of assembling and organizing
communities of multiple software agents [Cohen
et al., 1994; Moran et al., 1997]. Agents
participating in an application can be distributed
across multiple computers, and can be written in
different programming languages (currently

supported languages include C, Prolog, Lisp,
Delphi Pascal, Visual Basic, and Java1).

In terms of extensibili ty (easily adding new
functionality or upgrading one technology by
another), we have found that OAA provides
numerous advantages over approaches for
building monolithic, stand-alone applications. In
addition, we have found the OAA more flexible
than most distributed object frameworks such as
CORBA, in that the interactions among
components are not necessarily fixed in advance;
as agents connect and disconnect from the
network, the system adapts to the dynamic set of
available resources when attempting to resolve a
given goal. These properties are achieved by the
use of a high-level “Interagent Communication
Language” (ICL) that can be interpreted by a
special class of agents, called Facili tator Agents,
which are responsible for reasoning about the best
way to accomplish a goal given the current set of
agents and resources.

In the demonstration system, the OAA has been
used to bring together the modules and
technologies that provide the application’s
functionality: the user interface, login and
identification over the telephone (security),
speech recognition, NL understanding, database
access, fail-safe monitoring, and log file
generation. We will now look in more detail at
the technologies behind some of these
components, and at how they were integrated to
create this demonstration system.

Speech Recognition

The speech recognition component is a real-time
version of SRI’s DECIPHER™ continuous
speech recognition system based on context-
dependent genonic hidden Markov models
(HMMs) [Digalakis et al., 1996]. SRI’s
DECIPHER™ technology recognizes natural

1 All product and company names mentioned in this paper
are the trademark of their respective holder.

speech without requiring the user to train the
system in advance (i.e., speaker-independent
recognition) and can be distinguished from the
few other leading-edge speech recognition
technologies by its detailed modeling of variations
in pronunciation and its robustness to background
noise and channel distortion. These features make
the DECIPHER system more accurate in
recognizing spontaneous speech of different
dialects and less dependent on the idiosyncrasies
of different microphones and acoustic
environments.

The telephone acoustic models were trained on
approximately 50,000 utterances from SRI's
proprietary Partyline corpus, a digitally collected
telephone corpus containing read utterances from
3000 callers. The backed-off bigram language
model was trained on approximately 23,000
utterances of ATIS spontaneous speech data.

Natural Language Understanding

The NL understanding component accepts word
hypotheses from the recognizer, and produces
two outputs, the simplified logical form (SLF)
and the answer to the query.

A major advantage of using an agent-based
architecture is that it provides simple mix and
match of components. When constructing an
application requiring NL, we can select the NL
system that best meets the application’s
requirements. Several OAA-enabled technologies
have been used to provide NL for various
projects: the simplest one, based on Prolog’s
Definite Clause Grammars (DCGs), is fast, easy
to add vocabulary to, and capable of changing its
vocabulary and grammar dynamically as a
function of which agents are connected to the
network. Another NL system is based on CHAT
[Pereira, 1983] and is good at representing
temporal expressions. For the ATIS domain, we
are using a Template Matcher [Jackson et al.,
1991] in the application described here; our most
capable and efficient NL system, GEMINI

[Dowding et al., 1993], has been incorporated in
a telephone-only version of the ATIS system
[Bratt et al., 1995].

The Template Matcher operates by trying to build
“templates” from information it finds in the
sentence. Based on an analysis of the types of
sentences observed in the ATIS corpus, we
constructed eight templates that account for most
of the data in the domain: flight, fare, aircraft,
city, airline, airport, ground transportation and
meanings of codes and headings. Templates
consist of slots that the Template Matcher fill s
with information contained in the user input. For
example, the sentence

Show me all the United flights Boston to Dallas
nonstop on the third of November leaving after four
in the afternoon.

would generate the following flight template:

[flight, [stops,nonstop],
[airline,UA],
[origin,BOSTON],
[destination,DALLAS],
[departing_after,[1600]],
[date,[november,3,current_year]]]

In contrast to the template matcher system, the
Gemini NL system uses a broad-coverage
grammar of English to produce a full syntactic
and semantic analysis of the speaker’s utterance.
This analysis produces a scoped logical form
expression, which is then translated into a
database query. While Gemini is not as fast as the
template matcher for the ATIS application, it has
several advantages. Since Gemini uses a word-
synchronous bottom-up parser, it is possible to
start processing partial recognition hypotheses
before recognition is completed. This allows
speech recognition and language processing to be
carried out in parallel. Gemini also has
specialized components to recognize and correct
certain types of nongrammatical utterances,
including sentence fragments and verbal repairs.
In recent applications, Gemini grammars have
been used for both language interpretation and

speech recognition, by using a grammar compiler
to convert the grammar in Gemini’s formalism
into a grammar usable by the DECIPHER
recognizer.

One of the primary advantages of using the OAA
is that it allows us to pick and choose between
these competing approaches for NL analysis, or
even combine them in the same system when that
is more appropriate.

Implementation

Figure 2 ill ustrates the OAA agents assembled to
produce our ATIS-Web demonstration. Each
pictured component connects to a Facili tator
agent, which manages all communication and
interactions among the client agents. Because of
a security restriction imposed by Java and Internet
browsers, the Facili tator must run on the same
machine as SRI’s Web server; all other agents
may be distributed across different machines at
SRI, spreading the load as desired. In addition, a
fail-safe agent (not pictured) monitors the status
of all running agents, and can restart an agent if it
crashes or if the machine on which it is running
goes down.

Our main objective for this demonstration was to
take advantage of the distribution properties of
the Web to make ATIS easily available to a large
number of users. We first developed the system
by using standard HTML and a CGI executable to
provide a Web-accessible text version of the user
interface. Many problems, such as restricting
access to the WWW demonstration only to the
user actually talking to the system over the phone,
were worked out by using the CGI interface.
However, interactive visual feedback was limited
with this technology, so the user interface
component was rewritten in Java.

As this was the first OAA agent module written in
Java, much of the implementation work was to
port the OAA agent library to this new, still
developing language. To fit into Java’s Object

Oriented paradigm, the OAA library was
structured as two class objects: a low-level
communication object (TCP) and a high-level
object providing common functionality available
to all OAA agents (e.g., ICL, abili ty to set
triggers or monitors).

The multithreading capabili ties of Java were used
to improve the speed and the efficiency of each
communication layer. We used multithreaded
parallelism at both the TCP level (waiting
continuously for data) and at the high level for
processing and routing ICL messages.

The technologies we have described (speech
recognition and natural language) had been
encapsulated as OAA agents for other projects,
and were therefore directly reusable. In addition,
we were able to “borrow” several other pre-
existing agent functionalities, such as telephone
control and fail-safe monitoring. New Login and
LogFile agents were developed for this
application.

Figure 2: ATIS demonstration architecture

Current & Future Work

Continued work will focus on three general areas:
improving individual components, adding new
functionality to the demonstration, and taking
better advantage of OAA’s inherent parallelism to
produce more robust interactions.

The system currently generates a log file
containing the audio files and the interpreted
queries for each user interaction. One
improvement would be to use this large amount

of data (1700 connections) to retrain the
recognizer, and to reevaluate and adapt the NL
modules.

Another improvement would be to allow more
users to access the demonstration at the same
time. Currently, only a single user can be
connected at a time, a restriction imposed by the
single telephone line used to acquire speech input.
We might address this issue by adding a multiple
telephone line board, or by taking advantage of
new standards for audio input in Java to capture
speech locally with the user’s Web browser, using
the network to transmit the audio data to our
speech server.

We would like to add some new functionality to
the demonstration, as well. By plugging in new
agents encapsulating SRI’s English-to-French
translation technology and a commercial French
text-to-speech engine, we will be able to
effortlessly extend the current demonstration to
exhibit real-time simultaneous spoken language
translation.

At the interface level, we would like to combine
the demonstration's speech input with other
modalities, such as the mouse, touch-screen or
pen. Incorporating techniques developed in
[Cheyer and Julia, 1995] would enable the user to
simultaneously speak and draw directly on the
U.S. map, as in “Show me all flights from here to
Dallas leaving tomorrow”.

Finally, we would like to further explore OAA’s
parallelism capabili ties, by setting up two NL
systems, the Template Matcher and Gemini, in
competition with each other. Gemini is slower
but gives better results; when Gemini can give a
result within an acceptable amount of time, the
system should use this result. Otherwise, the
system will rely on results computed by the
Template Matcher.

References

Bratt, H.; Dowding, J. and Hunicke-Smith, K.
1995. The SRI Telephone-based ATIS System,
22-25. Austin, Texas: ARPA Workshop on
Spoken Language Technology.

Cheyer, A. and Julia, L. 1995. Multimodal maps:
An agent-based approach, 103-113. Eindhoven,
The Netherlands: International Conference on
Cooperative Multimodal Communication.

Cohen, P.; Cheyer, A.; Wang, M. and Baeg, S. C.
1994. An Open Agent Architecture, 1-8.
Stanford, California: AAA I Spring Symposium
Series on Software Agents.

Dowding, J.; Gawron, J. M. Appelt, D.; Bear, J.;
Cherny, L.; Moore, R. and Moran, D. 1993.
GEMINI: A natural language system for spoken-
language understanding, 54-61. Colombus, Ohio:
31st Annual Meeting of the Association for
Computational Linguistics.

Jackson, E.; Appelt, D.; Bear, J.; Moore, R. and
Podlozny, A. 1991. A Template Matcher for
Robust NL Interpretation, 190-194. Pacific
Grove, California: 4th DARPA Workshop on
Speech and Natural Language.

Moran, D.; Cheyer, A.; Julia, L.; Martin, D. and
Park, S. 1997. Multimodal User Interfaces in the
Open Agent Architecture, to appear. Orlando,
Florida: Intelligent User Interfaces'97.

Pereira, F. C. N. 1983. Logic for Natural
Language Analysis. Ph.D. diss., University of
Edinburgh.

Digalakis, V.; Monaco, P. and Murveit, H. 1996.
Genones: Generalized Mixture Tying in
Continuous Hidden Markov Model-Based Speech
Recognizers, 281. IEEE Transactions of Speech
and Audio Processing, Vol.4, Num. 4.

