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METHOD AND APPARATUS FOR
AUTOMATIC RECOGNITION USING
FEATURES ENCODED WITH PRODUCT-
SPACE VECTOR QUANTIZATION

BACKGROUND OF THE INVENTION

The present invention is related to the field of efficient
numerical encoding of physical data for use in an automatic
recognition system. A particular application is the field of
speech encoding for storage or transmission and for recog-
nition. The invention addresses problems of efficient
numerical encoding of physically derived data and efficient
computation of likelihood scores during automatic recogni-
tion.

A high level of detailed technical and mathematical skill
is common of practitioners in the art. This application
presumes familiarity with known techniques of speech rec-
ognition and related techniques of numerically encoding
physical data, including physical waveform data. This appli-
cation briefly reviews some basic types of prior art encoding
and recognition schemes in order to make the description of
the invention understandable. This review should not be
seen as comprehensive, and the reader is referred to the
references cited herein as well as to other prior art docu-
ments. This review also should not be seen as limiting the
invention to the particular examples and techniques
described herein and in no case should the invention be
limited except as described in the attached claims and all
allowable equivalents.

Two earlier co-assigned U.S. applications, 08/276,742
now U.S. Pat. No. 5,825,978 issued Oct. 20, 1998 entitled
METHOD AND APPARATUS FOR SPEECH RECOGNI-
TION USING OPTIMIZED PARTIAL MIXTURE TYING
(287-a1y and 08/375,908 now U.S. Pat. No. 5,864,810 issued
Jan. 26, 1999 entitled METHOD AND APPARATUS FOR
ADAPTING A SPEECH RECOGNIZER TO A PARTICU-
LAR SPEAKER 557 40y, discuss techniques useful in speech
encoding and recognition and are fully incorporated herein
by reference.

For purposes of clarity, this discussion refers to devices,
concepts, and methods in terms of specific examples.
However, the method and apparatus of the present invention
may operate with a wide variety of types of digital devices
including devices different from the specific examples
described below. It is therefore not intended that the inven-
tion be limited except as provided in the attached claims.
Basics of Encoding and Recognition

FIGS. 1A and 1B illustrate a basic process for encoding
physical data, such as speech wave form data, into numerical
values and then performing vector quantization (VQ) on
those values. A physical signal 2 is sampled at some interval.
For speech data, the interval is generally defined by a unit of
time t, which in an example system is 10 milliseconds (ms).
Assignal processor 5 receives the physical data and generates
a set of numerical values representing that data. In some
known speech recognition systems, a cepstral analysis is
preformed and an observed vector Xt (10) consisting of a set
of cepstral values (C; to C,3) is generated for each interval
of time t. In one system, each of the 13 values is a real
number and may be represented in a digital computer as 32
bits. Thus, in this specific example, each 10 ms interval of
speech (sometimes referred to as a frame) is encoded as an
observed vector X of thirteen 32-bit values or 416 bits of
data. Other types of signal processing are possible, such as,
for example, where the measured interval does not represent
time, where the measurement of the interval is different,
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where more or fewer values or different values are used to
represent the physical data, where cepstral coefficients are
not used, where cepstral values and their first and/or second
derivatives are also encoded, or where different numbers of
bits are used to encode values. In speech encoded for audio
playback, rather than recognition, different coefficients are
typically used.

In some systems, the Xt vectors may be used directly to
transmit or store the physical data, or to perform recognition
or other types of processing. In the system just described,
transmission would require 416*100 bits per second (bps) or
41.6 kbps of continuous transmission time. Recognition
system based on original full cepstral vectors often employ
Continuous Density Hidden Markov Models (CDHMMs),
possibly with the probability functions of each model
approximated by mixtures of Gaussians. The 08/276,742
patent, incorporated above, discussed a method for sharing
mixtures in such a system to enhance performance.

However, often it is desirable to perform further encoding
of the vectors in order to reduce the number of bits needed
to represent the vectors and in order to simplify further
processing. One known method for doing this is called
vector quantization, a type of which is shown in FIG. 1B.

Vector quantization (VQ) takes advantage of the fact that
in most physical systems of interest, the values (C; to C,5)
that make up a particular vector Xt are not independent but
instead have a relationship one to another, such that the
individual value of C; for example, will have some non-
random correlation to other values in that vector.

VQ also takes advantage of the fact that in most physical
systems of interest, not all possible vectors will be observed.
When encoding human speech in a particular language for
example, many ranges of vector values (representing sounds
that are not part of human speech) will never be observed,
while other ranges of vectors will be common. Such rela-
tionships can be understood geometrically by imagining a
continuous 13-dimensional space, which, though hard to
visualize, shares many properties with real 3-dimensional
space. In this continuous 13-dimensional space, every pos-
sible vector X will represent a point in the space. If one were
to measure a large number of X vectors for a physical system
of interest, such as human speech in a particular language,
and plot a point for each measured X, the points plotted in
space would not be evenly or randomly distributed, but
would instead form distinct clusters. Areas of space that
represented common sounds in human speech would have
many points while areas of space that represented sounds
that were never part of human speech would have no points.

In standard VQ, an analogous procedure is used to plot
clusters and use those clusters to divide the space into a finite
number of volumes. In the 13-dimensional example
described above, a sample of human speech data is gathered,
processed, and plotted in the 13-dimensional space and
13-dimensional volumes are drawn around dense clusters of
points. The size and shape of a particular volume may be
determined by the density of points in a particular region. In
many systems, a predetermined number of volumes, such as
256, are drawn in the space in such a way as to completely
fill the space. Each volume is assigned an index number
(also referred to as a codeword) and a “central” point (or
centroid) is computed for each volume, either geometrically
from the volume or taking into account the actual points
plotted and finding a central point. The codewords, the
descriptions of the volumes to which they relate, and the
centroids to which they are mapped, are sometimes referred
to in the art as a codebook. Some systems use multiple
codebooks, using a separate codebook for each feature that
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is quantized. Some systems also use different codebooks for
different speakers or groups of speakers, for example using
one codebook or set of codebooks for male speakers and
another for female speakers.

Once the volumes are determined from training data, new
speech data may be encoded by mathematically plotting the
13 value vector in the 13-dimensional space, determining
which volume the point falls in (or which centroid the point
is closest to) and storing for that point the VQ index value
(in one example, simply an 8-bit number from 0 to 255) for
that volume, thus Xt is encoded as VQt. When it is time to
unencode the data, the 8-bit VQ is used to look-up the
centroid for that volume and the (416-bit) value of the
centroid can be used as an approximation of the actual
observed vector Xt. First and second derivatives can be
computed from these decoded centroids or those values can
initially be encoded and stored similarly to the centroids
possibly using separate codebooks.

HMM-Based Signal Recognition

After the physical data is encoded, it may be presented to
an automatic recognition system, such as a speech recogni-
tion system. State-of-the-art speech recognizers are based on
statistical techniques, with Hidden Markov Models (HMMs)
being the dominant approach. The typical components of a
speech recognition and understanding system are the front-
end processor, the decoder with its acoustic and language
models, and the language understanding component.

The front-end processor typically performs a short-time
Fourier analysis and extracts a sequence of observation (or
acoustic) vectors. Many choices exist for the acoustic
vectors, but the cepstral coefficients have exhibited the best
performance to date. The decoder is based on a communi-
cation theory view of the recognition problem, trying to
extract the most likely sequence of words

W=[w,,w,, . .. ,Wy] given the series of acoustic vectors X
This can be done using Bayes’ rule:
W e PIW)P(X|W)
= argmaxy P(W|X) = argmaxww

The probability P (W) of the word sequence W is obtained
from the language model, whereas the acoustic model deter-
mines the probability P (W]|X).

In HMM-based recognizers, the probability of an obser-
vation sequence for a given word is obtained by building a
finite-state model, possibly by concatenating models of the
elementary speech sounds or phones. The state sequence
S=[s,,85, - - - ,87] is modeled as a Markov chain, and is not
observed. At each state s, and time t, an acoustic vector is
observed based on the distribution b, =P(X/s,), which is
called output distribution.

If the front-end processor quantizes the acoustic vectors
as described above, the output distributions take the form of
discrete probability distributions. If the acoustic vector gen-
erated is instead passed to the acoustic model before
quantization, then continuous-density output distributions
are used, with the multivariate-mixture Gaussians of the
following form a common choice:

K
bi(X) = ) PN pis Lo,
i=1

where p(w/|s) is the weight of the i-th mixture component
in state s, and N(x;;,2) is the multivariate Gaussian with
mean ¢ and covariance X. In work prior to the present
invention, continuous-density HMMs (CDHMMs) with
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4

mixture components that are shared across HMM states
were used because continuous density HMMs were gener-
ally believed to exhibit superior recognition performance
over their discrete-density counterparts.

In CDHMM speech recognition, even with some mixture
tying, it is known that computing probabilities can be
extremely computationally intensive. While such systems
have been shown to perform accurately, with recognition
accuracy approaching 90-95% for a recognition vocabulary
of five to twenty words, the amount of processing required
has generally made them unsuitable for some applications.
Vector Quantized Speech Recognition

It is known that systems using VQ, however, can compute
probabilities much more quickly, by using discrete HMMs.
In a VQ system, a probability for each model (P4,) can
be computed during training for each centroid and stored in
a table indexed by the VQ index. Determining the probabili-
ties for a particular observed vector of speech then is
reduced to determining the VQ index for that volume and
looking up the probabilities in a table. While discrete HMM
systems have been shown to perform very quickly, their
error rate is generally two times higher than the continuous-
density HMMs and this high error rate is not acceptable in
many applications.

The degradation in accuracy of the discrete-density
HMMs can be attributed to the low resolution with which the
space of observation features (the acoustic space) is repre-
sented. A typical discrete-density HMM uses a VQ code-
book with 256 codewords to represent a 13-dimensional
space. Increasing the codebook size is not a feasible solu-
tion: the computation and memory requirements of the
vector quantizer are proportional either to the number of
codewords, if a linear vector quantizer is used, or to their
logarithm (i.e. the number of bits), when a tree-structured
vector quantizer is used. Most significant, however, is the
cost of storing the look-up tables with the precomputed
probabilities. The number of parameters for a discrete-
density HMM is proportional to the number of codewords in
the quantizer. For medium to large vocabulary applications,
there are millions of parameters in discrete-density HMMs,
and hence increasing the codebook size is not a feasible
solution.

One particular need for efficient, accurate speech recog-
nition has arisen in the field of client/server recognition
applications over a network such as the Internet (or WWW).

What is needed is a new type of encoding and modeling
system for physical data such as speech that allows for
efficient transmission of observed features and improved
accuracy of recognition.

There is a voluminous scientific literature related to
speech recognition, some of which is referenced in the
previously cited co-assigned patents. Literature more
directly related to aspects of the invention is listed below.
The listing of a reference below is not to be construed as a
statement by applicants that the reference constitutes prior
art for the purposes of evaluation the patentability of the
present invention.

[1]D. Goddeau, W. Goldenthal and C. Weikart, “Deploy-
ing Speech Applications over the Web,” Proceedings
Eurospeech, pp. 685—688, Rhodes, Greece, September
1997.

[2] L. Julia, A. Cheyer, L. Neumeyer, J. Dowding and M.
Charafeddine, “http://www.speech.sri.com/demos/
atis.html,” Proceedings AAAI’97, Stanford, Calif,,
March 1997.

[3] E. Hurley, J. Polifroni and J. Glass, “Telephone Data
Collection Using the World Wide Web,” Proceedings
ICSLP, pp. 1898-1901, Philadelphia, Pa., October
1996.
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[4] S. Bayer, “Embedding Speech in Web Interfaces,”
Proceedings ICSLP, pp. 1684-1687, Philadelphia, Pa.,
October 1996.

[5] M. Sokolov, “Speaker Verification on the World Wide
Web,” Proceedings Eurospeech, pp. 847-850, Rhodes,
Greece, September 1997.

[6] C. Hemphill and Y. Muthusamy, “Developing Web-

Based Speech Applications,” Proceedings Eurospeech,
Rhodes, Greece, September 1997.

[7] The Aurora Project, announced at Telecom 95, “http://
gold.ity.int/TELECOM/wt95”, Geneva, October 1995.
See also “http://fipa.comtec.cojp/fipa/yorktown/
nyws029.htm”.

[8]D. Stallard, “The BBN SPIN System”, presented at the
Voice on the Net Conference, Boston, Mass., Septem-
ber 1997.

[9] S. J. Young, “A Review of Large-Vocabulary
Continuous-Speech Recognition,” IEFE Signal Pro-
cessing Magazine, pp. 45-57, September 1996.

[10] S. B. Davis and P. Mermelstein, “Comparison of
Parametric Representations for Monosyllabic Word
Recognition in Continuously Spoken Sentences,” IEFE
Trans. Acoustics Speech and Signal Processing, Vol.
ASSP-28(4), pp. 357-366, August 1980.

[11] V. Digalakis and H. Murveit, “Genones: Optimizing
the Degree of Mixture Tying in a Large Vocabulary
Hidden Markov Model Based Speech Recognizer,”
IEEFE Trans. Speech Audio Processing, pp. 281-289,
July 1996.

[12] A. Gersho and R. M. Gray, “Vector Quantization and
Signal Compression,” Kluwer Academic Publishers,
1991.

[13] J. Makhoul, S. Roucos and H. Gish, “Vector Quan-
tization in Speech Coding,” Proceedings of the IEFE,
Vol. 73, No. 11, pp. 1551-1588, November 1985.

[14] P. Price. “Evaluation of spoken language systems:
The ATIS domain,” Proceedings of the Third DARPA
Speech and Natural Language Workshop, Hidden
Valley, Pa., June 1990, Morgan Kaufmann.

[15] “Quantization of Cepstral Parameters for Speech
Recognition over the World Wide Web”, V. Digalakis,
L. Neumeyer and M. Perakakis, ICASSP’98.

[16] “Quantization of Cepstral Parameters for Speech
Recognition over the World Wide Web”, V. Digalakis,
L. Newmeyer and M. Perakakis, Submitted to Journal
of Selected Areas in Communications.

In references 15 and 16 listed above, some of the present
inventors discussed and evaluated various coding techniques
in order to transmit and recognize speech in a client-server
speech recognition application over the World Wide Web
(WWW) including approaches, such as linear and non-linear
scalar quantization algorithms, and a more advanced algo-
rithm that comprises a part of the present invention based on
product codes.

SUMMARY OF THE INVENTION

The present invention in one embodiment includes a
novel approach for encoding physical signals. A further
embodiment includes a novel and improved approach for
performing recognition on these encoded signals.

In one embodiment, the invention includes a method used
to partition a recognition feature vector into a number of
sub-vectors and a method for allocating available encoding
bits among the subvectors. The invention, in one
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6

embodiment, uses an iterative approach in which codeword
bits are assigned to the subvectors that result in the greatest
increase in recognition accuracy.

In a further embodiment, the invention introduces a
method for performing recognition effectively on encoded
subvectors, with a recognition performance better than that
of CDHMMSs. In a further embodiment, the invention
includes discrete subvector HMMs with product-code prob-
abilities. In another embodiment, the invention includes
discrete density subvector HMMs with mixtures.

The invention, in a specific embodiment, reduces the
redundant and noisy information that state-of-the-art speech
recognizers include in their representation of the speech
signal. In some typical prior art systems, the 13 cepstral
parameters are each represented by 32-bit floating point
numbers (a total of 13x32=416 bits for each cepstral vector,
and an additional 416 bits for first derivatives and an
additional 416 bits for second derivatives in systems that
encode one or both of those), and their statistical variation
is modeled by Gaussian distributions. In one embodiment,
the invention only requires 20 bits, rather than 416 bits, to
transmit a vector, or 60 bits to transmit a vector and first and
second derivatives. In a further aspect, the invention
replaces the computation of Gaussian likelihoods with table
lookups. This achieves a 60% reduction in computation time
(a speed-up of more than a factor of two) while maintaining
similar recognition accuracy to a CDHMM system.

The invention can thereby improve the efficiency and
decrease the cost of many applications based on speech
recognition. For example, by speeding up the recognition
process, the recognizers will be able to handle larger
vocabularies in real time applications. In another use of the
invention, it is possible to increase the number of recogni-
tion processes that run on the same computer and are
serviced by the same processor, since each recognizer will
have smaller computational demands. As a result, the overall
cost of a system, such as speech recognition WWW server,
will be reduced.

In one experimental system, the time required for sen-
tence recognition was reduced from 5.3 seconds for a
Gaussian CDHMM system with mixtures to 2.3 seconds for
a table look-up system. A system according to the invention
would require just 5 table look-ups to determine primary
feature probability (or 5*32 lookups with mixtures) com-
pared to 13 Gaussian computations (or 13%¥32 Gaussian
computations with mixtures) for a CDHMM system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B illustrate a basic process for encoding
physical data, such as speech wave form data, into numerical
values and then performing vector quantization (VO) on
those values.

FIG. 2 illustrates a representative example method of
partitioning a recognition vector into a number of subvectors
and performing vector quantization.

FIG. 3A illustrates a representative example method of
performing recognition on subvector indexes to obtain sub-
vector probabilities.

FIG. 3B illustrates an optional further method of obtain-
ing secondary features after reconstructing centroids.

FIG. 4 illustrates speech recognition performance as a
function of the bit rate for different numbers of subvectors
in the product-code VQ (three and five) in a specific embodi-
ment of the invention.

FIG. 5 illustrates speech recognition performance as a
function of the bit rate for different numbers of subvectors
in the product-code VQ in a different embodiment of the
invention.
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DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Client/Server Speech Recognition

One embodiment and particular application of the
invention, though not the only application, is in a client-
server speech recognition system. In general, in such
systems, the communication channel between the clients and
the server will have limited bandwidth. The clients may be
deployed on heterogeneous environments, such as personal
computers, smart devices, and mobile devices. Speech is
captured by the clients, and after some local processing, the
information is sent to the server. The server recognizes the
speech according to an application framework and sends the
result string or action back to the client.

In one embodiment, the system uses two major speech
technologies: speech recognition and speech coding. In a
two-way-audio system, coding is used to present audio
prompts to the user. Prior art coding techniques that empha-
size the audio quality of digitally transmitted speech can be
used to send the speech over low-bandwidth channels and
produce perceptually acceptable speech to the user. The
invention is novel primarily in the opposite path; that is, the
speech data sent from the client (i.e. generally speech
captured from a human user) to the server.

Traditional speech coding research focuses on the perfor-
mance tradeoff between transmission rates and perceptual
reproduction quality. The data compression problem for
state-of-the-art HMM based speech recognition systems
differs from the traditional speech coding problem in that the
optimization criterion is recognition accuracy instead of
perceptual quality of the reproduced data For that reason,
some techniques used in reproduction encoding were
believed not optimal for recognition.

Speech Recognition over the WWW

There are several alternative architectures for applications
incorporating speech recognition technology on the WWW,
three of which are outlined here. The first strategy is to
perform no processing related to the recognition/
understanding process at the client side, but to simply
transmit the user’s voice (encoded digitally, possibly using
reproduction encoding) to the server, and this strategy was
employed in some prior WWW recognition systems. The
second alternative is to perform most of the speech recog-
nition processing at the client side, and then transmit rec-
ognition results to the server, but this limits the kinds of
clients that can effectively be used and requires large rec-
ognition software engines to be running on each client.
Finally, an intermediate solution is to do some front-end
processing at the client and transmit only the information
that the recognizer needs through the network channel to the
server. Techniques of the present invention are particularly
suited to a system using the intermediate solution.
Client-Server Processing

The client-server approach envisioned as an embodiment
of the present invention is based on two key results: (1)
Feature extraction is only a small part of the computation
that takes place in a speech recognition and understanding
application; and (2) Speech recognition needs only a small
part of the information that the speech signal carries. The
representation of the speech signal used for recognition
concentrates on the part of the signal that is related to the
vocal-tract shape.

The first result implies that the front-end processing (the
feature extraction) can run at the client side on a much wider
range of machines than the ones that will support the whole
recognition process. There are additional advantages of
client-server processing over the client-only model. The
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8

recognizer may need information that exists on the server
side in order to guide the decoding process; this information
would have to be transmitted to the client in the client-only
model, something unnecessary in the client-server model,
since the decoding takes place at the server side. To make
speech recognition servers available from a variety of
systems, front-end processing and compression can be stan-
dardized. Standard front-end modules can be installed on the
client machines as a system resource, a Java applet, or a
browser plug-in.

The second observation shows the advantage of client-
server processing over the server-only model. Traditional
speech coding focuses on the perceptual reproduction qual-
ity of the coded speech. As a result, the speech coder may
transmit redundant information, and at the same time intro-
duce noise to the features that are important in the recog-
nition process because of bandwidth limitations. For
recognition, the objective of the coding process should be
recognition accuracy. If the information used by the recog-
nition process is contained in a set of features, then only this
set of features needs to be compressed and transmitted to the
server.

Of course, encoding and transmitting only the front-end
processed tokens can become a disadvantage because with-
out any representation of the speech associated with these
tokens, the tokens cannot be associated with the audio
speech stream that generated them (referred to as labeling).
As a result, it may not be possible to monitor in-service
recognition performance, or to collect labeled speech data
for development and performance improvement. To over-
come this limitation, and collect labeled data during the
initial deployment of the application, it is possible to trans-
mit the original speech encoded using a very-low-bit-rate
coder (just enough to allow a human listener to understand
the speech) as side information. This side information can be
transmitted along with the encoded front-end tokens during
the development phase only. The client-server system just
discussed can be applied to the Internet, as well as to
wireless channels.

Coding Feature Vectors as Sub-Vectors

To improve the resolution with which the acoustic space
is represented, without the significant costs incurred by
increasing the vector codebook size; the invention in one
embodiment employs subvector quantization of observation
values. In one embodiment, these values are the cepstral
coefficients and possibly also their first and second deriva-
tives. Subvector quantization is known for audio reproduc-
tion of speech signals, but it is believed it has not been
employed for speech recognition. This procedure is shown
in a representative example in FIG. 2, wherein a recognition
vector 10 is first partitioned into a number of subvectors. In
this specific example, five subvectors are used, with the first
two being two-dimensional subvectors and the remaining
three being three-dimensional. In an alternative
embodiment, fifteen subvectors could be used, five for the
primary values, and the remaining ones for first and second
derivatives.

The subvectors are encoded using separate codebooks, in
the illustrated example five codebooks, the first two being
two-dimensional and remaining three, three-dimensional.
The total number of codewords that represent the acoustic
space is the product of the number of codewords used for the
representation of each subvector, in the case shown in FIG.
2, 32*32*16*16%*4=1,048,576 and this type of subvector
quantization is sometimes referred to as product code vector
quantization.

In one embodiment, the subvectors are encoded at the
client side, transmitted through the network, and then
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mapped to their centroids at the server. These centroids are

then the input to the recognition process, which may be a

CDHMM process. Employing subvector quantization of the

cepstral coefficients has the following benefits:

The acoustic space may be represented with a high
resolution, while keeping the computational and memory
requirements of the quantizer low.

The centroids of the product-code can be used, if desired, as
input to a CDHMM recognizer at the server.

It is not necessary to transmit secondary features, like first
and second-order derivatives, because secondary features
can be reconstructed at the server from the centroid series.
However, transmission of secondary features is an option
and a preferred embodiment for some applications.
According to various embodiments of the invention,

different numbers of subvectors can be used for the same

values. Experiments have been performed beginning with
the extreme case where the subvectors each consist of single
cepstral coefficients, in the art sometimes referred to as
scalar quantization. The numbers of bits used to encode the
coefficients (or quantization levels) may use either uniform
or non-uniform. In the latter case, the quantization levels are
matched to the statistics of the coefficient that is being
quantized. In the non-uniform quantization scheme, the
empirical distribution function as an optimal companding
function is used, since the random variable Y=F (X) obeys

a uniform distribution. The empirical distribution can be

estimated by using a large number of utterances from

different speakers.

In the more general case, the dimensions of the subspaces
used in the product code are larger than one. Although more
complex variations of product codes could be used, in one
embodiment the invention uses partitioned VQ, where the
cepstral vector is divided into two or more non-overlapping
subvectors.

Determining Subvector Quantization Levels
Once the subvectors of the product code are formed, the

next important design question is how to allocate the bits
among the respective codebooks. Because the invention is
interested in coding speech features for recognition, in one
embodiment it includes an automatic bit-allocation algo-
rithm that uses the word-error rate as a metric. Specifically,
the invention starts with an initial bit allocation to
subvectors, and then increases the bit rate by adding bits to
the subvectors that yield the maximal incremental increase
in recognition performance as follows:

Initialization: Allocate the initial number of bits to sub-
vectors and evaluate speech recognition performance. Set
this as the current configuration.

Step 1: For each subvector, increase its allocated number
of bits by one and evaluate speech recognition performance,
keeping the number of bits assigned to each of the remaining
subvectors as in the current configuration. Assign the addi-
tional bit to the subvector that resulted to the maximal
increase in recognition performance, and set the new assign-
ment as the current configuration.

Step 2: If the desired recognition performance has been
achieved, or the maximum available bit rate has been
reached, stop. Otherwise, go to step 1.

Any available metric can be used to evaluate speech
recognition performance. In one embodiment the invention
uses the word-error rate (WER), which is the percentage of
words that were ‘erroneously’ recognized (i.e., the recog-
nizer has added, deleted or replaced some of the words that
have been spoken in the initial sentence). Thus:

w
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_ INS+DEL+SUB

WER = %100 %.
TOTAL

Although the above procedure is computationally
expensive, due to the multiple recognition experiments that
must be run at each step, it is only executed once during the
initial design of the quantizer. If, however, a faster allocation
scheme is desired, the total assigned bits in the second step
can be incremented in steps of multiple bits.

Using Discrete-density Mixture HMMs for More Efficient

Recognition

The previous section described an embodiment in which
once the VQ subvector indices were received and ready to
be processed, these indices were used to generate high-
resolution 13-dimensional reconstructions of each observed
vector and those reconstructions and derived secondary
features could then be used to compute probabilities for
speech recognition possible using CDHMMs, CDHMMs
with mixture tying, or other high-computation recognition
systems.

A further embodiment of the invention, however, achieves
a surprising and substantial speed-up in recognition perfor-
mance by computing probabilities for HMMSs for subvector
centroids separately during initial system training, in a way
similar to discrete HMMs. The probabilities that are com-
puted and stored are not of observed vectors themselves, but
of the different subvector parts of observed vectors, and
these subvector probabilities are in fact shared or tied over
many different observed vectors. These sub-vector prob-
abilities are stored in a table at the recognition engine (in a
client/server system at the server side) according to subvec-
tor indices in separate codebooks for each subvector.
According to this embodiment, determining the probability
for a particular model for a particular observed vector
requires looking up the subvector probabilities in the dif-
ferent subvector codebooks for that model and then multi-
plying those subvector probabilities to achieve the vector
probabilities. Thus, in the system shown in FIG. 2, five table
lookups and a multiplication are required to determine a
probability for a model. In an alternative system, where
additional first and second derivatives are encoded as five
subvectors, a total of fifteen table lookups are required.

Optimizations are possible where different subvectors
receive different weightings or where a multiplication is not
performed if a certain sub-probability is very low. By
dividing the probability table into several subvector tables
during training and recognition, substantial savings are
possible in terms of table size. In the specific example shown
in FIG. 2, for example, performing training and recognition
in a single table for a 20-bit vector code would require
32*32*16*16%*4=1,048,576 table entries for cach MM. Per-
forming training and recognition according to the invention,
by contrast, requires just 32+32+16+16+4=102 table entries
for each HMM. Experimental work has shown that, contrary
to some expectations, a high level of recognition accuracy
can be achieved using this approach. Surprisingly, discrete
density subvector HMMs according to an embodiment of the
invention, have been shown to perform better than
CDHMMs and with substantially less computation required.

In a further embodiment, the invention may include
discrete subvector HMMs with mixtures to improve recog-
nition performance. Mixtures are known in the art as a way
to improve recognition performance by allowing automatic
mathematical clustering of training data into different code-
books (for example, training data for males and females may
have very different characteristics). Mixtures have previ-
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ously been used in CDHMMs such as described in the
co-assigned patents referenced above, though they have not
been used in discrete HMMs because the low resolution with
which the observation vectors were represented in previous
discrete HMMs did not require elaborate modeling.

One embodiment of the invention incorporates mixtures
into discrete subvector HMMs to substantially improve
recognition performance. Because of the efficiency of the
subvector discrete HMM recognition according to the
present invention, mixtures can be introduced without as
substantial a computation cost as for other recognition
systems.

According to an embodiment incorporating mixtures, the
recognition equation will have a form near:

32

P(X) = Z Ai Pg(VQy = k1) Pa(VQ, =ka)-
i1

Psi(VQ3 = k3)- Psi(VQy = ka)- Pa(VQy = kn)

where P (X)) is the probability for a particular model state
s that X, was produced by that state, =; is the weight of the
i-th mixture component, k; is the codebook index observed
at time t for the first subvector, and P_(VQ,=k) is the
probability that the first subvector index is k;, derived from
a table lookup for this model state and mixture component
i.

In some applications, it is desirable to have first and
second order derivatives present at the server during recog-
nition. In one embodiment, this may be accomplished by
encoding those values at the client and transmitting them
along with the subvector indices. In an alternative
embodiment, approximate observed vectors are derived
from the subvector indices at the server and are used to
determine first and second order derivatives, while initial
probabilities are derived by the table look-ups just
described.

Computing Initial Probabilities From Training Data For
Discrete HMMs
In order to create a set of recognition codebooks (in this

case, tables of values indexed by VQ index) to be used in the

equations shown above, the invention in another aspect
includes a modification to the well-known forward-
backward algorithm. The parameters of the discrete-mixture

HMM models can be estimated automatically from speech

data using the iterative method that we describe below.

1. Initialize the parameters of all the discrete-mixture HMMs
to some arbitrary values.

2. Perform an iteration of the well-known forward-backward
algorithm on the training speech data and compute the
quantities for every state s and mixture component i and
at every frame t

A= Pi(VQy =k1)-Pg(VQr = k) -

o) = OB PlVQs = k) PV = ko) PalV @y =)
o Yay(s)B(s") B
s Zl/\j-PSj(VQl :kl)'ij(VQ2=k2)-
£

Pgy(VQ3 =k3)- Ps(VQy = k4)- Pyi(VQy =ky)

where the quantities o(s),f(s) are the alpha and beta
probabilities that are computed with the forward-backward
algorithm, and the probabilities of the subvectors are com-
puted using the previous estimates of the model parameters.
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3. Compute new estimates for the subvector probabilities
using the following formula:

D, s
Times ¢ where
index of first
subvector is k7

2 s i)

Times ¢

Pg(VQy =k;) =

Update similarly the probabilities of all the subvectors for all

states s and mixtures i.

4. Replace the previous values of the subvector probabilities
with the new estimates. If a predefined convergence
criterion is not met, go to step 2 and repeat.

EXPERIMENTAL RESULTS

Experimental Results

In experimental work performed during development of
the invention, we followed the client-server model using just
the encoding scheme described above and initially with
CDHMM recognition. We implemented a highly modular
signal processing front-end in Java to compute the cepstral
coefficients and encode the parameters. We verified that the
system is fast enough to handle the feature extraction in
real-time using a Pentium 166 Mhz computer and a Java
virtual machine (JVM) with a just-in-time (JIT) compiler
and ran benchmarks to compare performance on the com-
putation of the fast Fourier transform. We found that the
optimized C code is twice as fast as the Java implementa-
tion. We believe that as the JVMs become more efficient the
gap between C and Java performance will become even
smaller. The Java applet is downloaded from the server. By
default, the Java security model prevents an applet from
accessing native resources. There are various possible
approaches to grant permission to access native resources.
Coding Of Cepstral Features

For the client-server approach, we determined, as dis-
cussed above, that we needed only to transmit the set of
coefficients that will be used in recognition. Mel frequency-
warped cepstral coefficients (MFCCs) constitute the set of
features used by most state-of-the-art HMM-based speech
recognizers today. We used typical choices of 13-dimensions
for the feature vector computed 100 times per second.

To experiment with the quantization of cepstral param-
eters for speech recognition over the WWW, we used the
air-travel information (ATIS) domain. In ATIS, a user can
get flight information and book flights across the United
States using natural language. ATIS consists of a vocabulary
of approximately 1,500 words and has moderate perplexity
(a measure of difficulty). ATIS is the domain of the first
speech-enabled application over the WWW developed at
SRI International. Both high-quality and toll-quality data are
available for the ATIS domain, which allowed us to compare
the server-only architecture, which uses toll-quality speech,
with the client-server model that can use high-quality data.
Baseline and Speech-Encoding Performances

The recognizer used throughout the early experiments
was SRI’s DECIPHER™ speech-recognition system. It uses
continuous-mixture density HMMs, with Gaussians that are
shared across acoustically similar states. The signal process-
ing consists of a filterbank-based front end that generated six
feature streams: the cepstrum, the cepstral energy, and their
first- and second-order derivatives. Eight cepstral coeffi-
cients were used for telephone-quality speech, whereas for
high-quality data we increased this number to thirteen. The
coefficients were computed at a rate of 100 times per second.
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A bigram language model was used throughout our experi-
ments. The performance of the baseline recognizer high-
quality speech was evaluated at 6.55% WER using a test set
of 34 male and female speakers with 400 utterances.
Although not directly comparable, since it was evaluated on
a different set of speakers than the high-quality baseline, the
performance on telephone-quality (64 kbps) speech is sig-
nificantly lower, measured at 12.7% WER. Compared with
the telephone-quality baseline, the recognition performance
did not degrade when the data was encoded using the G721
32-kbps ADPCM (Adaptive Differential Pulse Code
Modulation) standard. However, when speech was encoded
with the full-rate RPE-LTP GSM (Regular Pulse Excited
linear predictive coding with Long-Term Predictor, General
System for Mobile communications) 13-kbps speech
encoder used in cellular telephony, the WER increased to
14.5%. These results indicate the recognition performance
of the server-only model for bit rates ranging between 13
kbps (WER=14.5%) and 64 kbps (WER=12.7%).

Scalar Qantization Performance

We first quantized the cepstral coefficients of telephone-
quality speech by using scalar quantization (with each of 13
coefficients encoded separately), and evaluated the recogni-
tion performance for various numbers of bits per coefficient.
We investigated both uniform and non-uniform quantiza-
tion. In the non-uniform quantization scheme, the empirical
distribution was estimated by using 800 utterances from a
different set of speakers than those included in the test set.
These results are summarized in Table 1.

We determined that recognition performance is essentially
flat for 4 to 8 bits per cepstral coefficient, and starts to
degrade for lower numbers of quantization levels. Although
we use a very simple quantization scheme, the WER of
132% at 3.6 kbps is significantly better than the GSM
performance, although the latter used a bit rate that was four
times higher. In addition, we see that the non-uniform
quantization outperforms the uniform quantization
significantly, especially at low numbers of bits per cepstral
coefficient.

TABLE 1

Bit rates and word-error rates for scalar quantization of
cepstral coefficients in telephone-quality speech.

Word-Error Rate (%)

Bits/Coef. Bit Rate (kbps) Uniform Non-uniform
8 7.2 12.55 12.82
7 6.3 12.65 12.87
6 5.4 13.08 12.65
5 4.5 13.14 13.62
4 3.6 17.43 13.19
3 2.7 45.47 14.64
2 1.8 108.9 21.07

A significant advantage of running the front end at the
client side, however, is that can use the high-quality front
end that uses a higher sampling rate and a larger number of
bits per waveform sample. The baseline performance for the
high-quality front end is 6.55% WER. In Table 2, we present
the recognition results for scalar quantization of the cepstral
coefficients of a high-quality front end. Although the bit
rates are slightly increased when compared to the telephone-
quality front end, because of the larger number of cepstral
coefficients used, the recognition performance is signifi-
cantly better at comparable bit rates. For example, transmis-
sion of the high-quality cepstral coefficients at 3.9 kbps
yields a WER of 6.88%, whereas transmission of the toll-
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quality coefficients at 3.6 kbps resulted in a 13.19% WER.
When compared to the server-only processsing model using
GSM encoding, the performance improvement is even big-
ger: we get less than half the error rate (6.88% vs. 14.5%)
at less than a third bits per second (3.9 kbps vs. 13 kbps).

TABLE 2

Bit rates and word-error rates for scalar quantization of
cepstral coefficients in high-quality speech.

Word Error Rate (%)

Bits/Coef. Bit Rate (kbps) Uniform Non-uniform
8 10.4 6.65 6.53
7 9.1 6.76 6.40
6 7.8 6.65 6.43
5 6.5 6.96 6.32
4 52 6.96 6.32
3 3.9 12.45 6.88
2 2.6 95.43 9.04

Product-Code Quantization Performance

In the previous section, we encoded the cepstral coeffi-
cients using scalar quantization with a constant number of
bits per coefficient. In this section, we present our experi-
ments using product code VQ (PCVQ) with a variable
number of bits per subvector. In all our experiments, the
codebooks for each subvector were estimated by running the
generalized Lloyd algorithm on the same 800 utterances that
were used to estimate the empirical distribution in the
non-uniform scalar quantization experiments. The code-
books were initialized using binary splitting.

We first compared two alternative approaches for parti-
tioning the cepstral coefficients into subvectors: a
correlation-based approach with subvectors at {(1,5), (3,9,
12,13), (4,6), (2,7,11), and (8,10) and a knowlege-based
approach with the subvectors shown below. The knowledge-
based approach exhibited better performance at all bit rates
and was the approached used for the rest of the experiments.

In Table 3 we present, for the case of five subvectors, the
WERSs at various bit rates, as we measured them at various
stages of the bit-allocation algorithm. The five subvectors
consisted of the cepstral coefficients {(1,2), (3,4), (5,6,7),
(8,9,10), (1 1,12,13)}. The product-code VQ achieved the
WER of unquantized speech with just 2000 bps.

TABLE 3

Bit rates and word-error rates for product-code VQ using 5 subvectors.

Bit Rate (bps) Word-Error Rate (%)

1400 11.71
1600 9.30
1800 8.10
1900 6.99
2000 6.63

We then examined the behavior of the bit-allocation
algorithm for various numbers of subvectors in the product-
code VQ. In Table 4 we present the case of five subvectors.
The initial bit rate was 1200 bps, and the algorithm was
initiated by distributing twelve bits to the five subvectors, as
shown in the first row of Table 4. The algorithm proceeds
incrementally starting of an initial allocation of a few bits
and increasing the number of bits. The table shows only the
best line (in terms of WER) among the possible choices for
each bit total, which is also the initial point for the next
iteration. To speed up the process, the number of allocated
bits was increased by a step of two bits in the first iterations
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of the algorithm (until 1800 bps), and by a single bit in the
latter stages of the algorithm. We can see that the initial
WER of 16.79% decreases very rapidly and approaches the
unquantized-speech performance at 2000 bps. The signifi-
cance of the low-order coefficients is also obvious: The
additional bits are allocated to the low-order subvectors first,
and the final bit allocation uses more bits for the first two
subvectors, although they are composed of only two coef-
ficients each.

TABLE 4

Progression of the bit-allocation
algorithm for the case of five subvectors

Composition of subvectors by MFCC coefficients
1,2 3,4 5,67 89,10 11,12, 13 Word-
Total Number of bits assigned to each subvector Bit Rate  Error
bits at each iteration (bps)  Rate (%)
12 3 3 2 2 2 1200 16.79
14 5 3 2 2 2 1400 11.71
16 5 3 4 2 2 1600 9.30
18 5 3 4 4 2 1800 8.10
19 5 4 4 4 2 1900 6.99
20 5 5 4 4 2 2000 6.63

The bits assigned to each subvector, the total bit rate, and
the corresponding word-error rate are shown at intermediate
steps of the algorithm. The same algorithm can be used to
assign a variable number of bits to each coefficient in the
non-uniform scalar quantization, since it is a special case of
product-code VQ with single-element subvectors. The pro-
gression of the algorithm in this case is shown in Table 5.
The initial bit rate was 1700 bps by assigning 17 bits to the
13 coefficients, as shown in the first row of Table 5. The
algorithm was sped up by increasing the number of bits at
each step by two, and by assigning them to the two coeffi-
cients that decreased the WER the most. In this case, rates
of at least 2600 to 2800 bps are required before the
unquantized-speech performance is reached. The final bit
allocation uses three bits for the first four cepstral
coefficients, and two bits for the remaining coefficients.

TABLE 5
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coefficient. The partitioning of cepstral coefficients into
subvectors for the case of five subvectors was given above,
whereas for the case of three subvectors, the partitioning was
1(1,2,3), (4,5,6,7,8), (9,10,11,12,13)}. Scalar quantization
with a variable number of bits demonstrates significantly
better performance than the scalar quantization scheme with
a fixed number of bits per coefficient, reducing the WER to
6.81% from 9.04% at 2600 bps. Product code VQ, however,
performs significantly better than scalar quantization at any
bit rate. When comparing the three- and five-subvector
cases, we see that they behave similarly for low bit rates
(below 1800 bps), but then the five-subvector scheme con-
verges faster to the unquantized speech performance.

Using the server-only model with GSM encoding of
speech, a performance of 14.5% WER was achieved at a
bit-rate of 13 kbps. However, using the client-server model,
for encoding MFCCs resulted in a much lower error rate—
6.5% WER-since a high-quality front end can be used at the
client side. This improvement in performance also comes at
a fraction of the bit rate required for GSM encoding. A bit
rate of 3900 bps is required when non-uniform scalar
quantization with a constant number of bits per coefficient is
used. This rate is reduced to 2800 bps with non-uniform
scalar quantization with variable number of bits per
coefficient, and to just 2000 bps when product-code vector
quantization is used.

Other techniques, like predictive VQ, can be used to
reduce the bit rate by taking advantage of the high correla-
tion across time that cepstral vectors exhibit. However, other
aspects of the problem must be considered, such as the
computational complexity of the encoder, which in our case
runs at the client side. The free nature of the Internet may
limit the amount of encoding one can do. A wireless personal
digital assistant (PDA) may be more likely to benefit from
more encoding time and less transmission time, in which
case the product-code VQ at 2 kbps may be required. Other
types of clients may benefit more from the simplicity of the
scalar quantization and transmit at 2800 bps.

Further recognition improvement

Table 6 shows the WER, the recognition time (on a 233
MHz Pentium II), and the process memory requirements, for
the baseline CDHMM and the discrete-mixture HMMs

Progression of the bit-allocation algorithm for the case of scalar
quantization (13 subvectors). The bits assigned to each coefficient, the total bit rate, and
the corresponding word-error rate are shown at intermediate steps of the algorithm.

MFCC coefficient index

1 2 3 4 5 6 7 8 9 10 11 12 13

Total Number of bits assigned to each coefficient Bit Rate Word-Error
bits at each iteration (bps) Rate (%)

17 22 2 2 1 1 1 1 1 1 1 1 1 1700 12.78

18 32 2 2 1 1 1 1 1 1 1 1 1 1800 10.66

20 3 3 2 3 1 1 1 1 1 1 1 1 1 2000 8.69

22 3 3 3 3 1 2 1 1 1 1 1 1 1 2200 7.67

24 3 3 3 3 2 2 1 1 1 1 1 2 1 2400 6.99

26 3 3 3 3 2 2 1 1 2 1 2 2 1 2600 6.81

28 3 3 3 3 2 2 1 2 2 2 2 2 1 2800 6.71

30 3 3 3 3 2 2 2 2 2 2 2 2 2 3000 6.55

FIG. 4 illustrates speech recognition performance as a
function of the bit rate for different numbers of subvectors
in the product-code VQ (three and five), and for the non-
uniform scalar quantization with a variable number of bits
per coefficient. In the same figure, we also show the WER
for non-uniform scalar quantization using two bits per
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encoding 39 values as different number of subvectors. Our
experimental results show that in this embodiment, the
invention achieves a recognition speedup of a factor of 2.5
(or a reduction in time of 60%) maintaining the same
recognition performance. In this embodiment, the discrete-
mixture HMMs have increased memory requirements, as is
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also shown in the table.
TABLE 6
TIME Time Speed-up
WER  (secs/ (%) MEMORY

SYSTEM (%)  sent) over CDHMM (MB)
CDHMM 6.60 5.25 — 27.0
Discrete, 39 subvectors 6.32 2.61 50.3 45.8
Discrete, 24 subvectors 6.38 2.36 55.0 437
Discrete, 15 subvectors 6.63 2.21 58.0 579
Discrete, 9 subvectors 6.53 213 59.5 150.2

FIG. 5 shows the same systems, operating at different
points in terms of WER-speed trade-offs. The closer the
curves to the lower left point the better, since we get low
error rates at faster speeds. The superior performance of the
discrete-mixture HMMs over CDHMMs is also demon-
strated in this figure.

The invention has now been explained with reference to
specific embodiments. Other embodiments will be apparent
to those of skill in the art. In particular, specific processing
orders have been described and functions have been
described as being in particular orders, however, many of
these sub functions could be differently arranged without
changing the essential operation of the invention. It is
therefore not intended that this invention be limited, except
as indicated by the appended claims and all allowable
equivalents.

What is claimed is:

1. A system for assigning codeword bits among a number
of feature vectors to be used in automatic recognition
comprising:

a front end encoder for receiving a physical signal;

a feature extraction engine for converting said signal into
a series of digitally encoded numerical feature vectors,
said feature vectors selected in order to perform
recognition, each of said feature vectors comprising at
least two separable numerical parameters;

a subvector quantizer for dividing said feature vectors into
a number of subvectors and for performing vectors
quantization on said subvectors based a first assignment
of bit numbers to each subvector in order to assign a
codeword to each subvector to approximate said each
subvector,

a recognition engine for performing recognition using
said codewords representative of said quantized sub-
vectors to produce a sequence of labels;

memory for storing a plurality of statistical models with
trained parameters;

a tester for measuring recognition performance based on
comparison of said labels with the corresponding pre-
transcribed labels of said physical signal from a devel-
opment set of the tester; and

feedback means from said tester to said subvector
quantizer, for feeding back performance criteria;

wherein said subvector quantizer is further operative in
response to said performance criteria to assign addi-
tional bits to said subvectors incrementally until the
desired level of recognition performance is reached or
a threshold of assigned bits is reached.

2. The system according to claim 1 wherein said stored
statistical models are associated with a subunit of speech and
represent that subunit of speech as a plurality of states, each
state having associated with it a probability function, the
probability functions having parameters determined from
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training data, the probability function producing a probabil-
ity that a given set of speech data is representative of that
particular state, the recognized known labels comprising
words in the recognition database.

3. The method according to claim 2 wherein the prob-
ability functions are stored in the system as a mixture of
simple probability functions.

4. The system according to claim 3 wherein the simple
probability functions are discrete pre-computed probability
values retrieved by a table look-up.

5. The system according to claim 3 wherein the simple
probability functions are Gaussians.

6. The system according to claim 5 wherein the speaker
independent probability functions are mixtures of Gaussians
having the form

psi(yils) = D plerlsON (v pig, Zig).

7. The system according to claim 1 wherein each of said
stored statistical models is associated with a subunit of
speech.

8. A recognition system for automatically recognizing
physical signals and deriving known labels comprising:

a front end encoder for receiving a physical signal;

a feature extraction engine for converting said signal into

a series of digitally encoded numerical feature vectors,
said vectors selected in order to perform recognition,
each of said vectors comprised of at least two separable
numerical parameters;

a subvector quantizer for separating said feature vectors
into at least two subvectors and for determining a
codeword for each subvector to approximate said sub-
vector;

a channel for transmitting codewords for said subvectors
to a recognition engine;

memory for storing a plurality of statistical models with
trained parameters; and

a recognition engine capable of using said stored statis-
tical models to recognize known labels from a set of
unidentified feature vectors

wherein said recognition engine performs vector quan-
tized subvector recognition using discreet HMMs hav-
ing the form:

32
P(X,) = Z Ai-Pg(VQy = k1) Pa(VQ, =ka)-
)

Pai(VQ3 = k3)- Psi(VQy = ka)- Pa(VQy = kn)

where P (X)) is the probability for a particular model state
s that X, was produced by that state, A, is the weight of
the i-th mixture component, k; is the codebook index
observed at time t for the first subvector, and

P.(YQ.=k)) is the probability that the first subvector index

is k;, derived from a table lookup for this model state
and mixture component i.

9. A method for assigning codewords bits among a
number of feature vectors to be used in automatic recogni-
tion comprising:

dividing an observation vector into a number of subvec-

tors;

assigning a first set of bit numbers to each subvector;

performing vector quantization on said subvectors;
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performing recognition using said quantized subvectors;

measuring recognition performance;

assigning additional bits to subvectors incrementally until

the desired recognition performance is reached or a
threshold of assigned bits is reached; and

selecting the bit values that achieve the most desired

performance.

10. The method according to claim 9 wherein said rec-
ognition performing step comprises using stored statistical
models with trained parameters for computing likelihoods of
said quantized subvectors.

11. The method according to claim 10 wherein said stored
statistical models are associated with a subunit of speech and
represent that subunit of speech as a plurality of states, each
state having associated with it a probability function, the
probability functions having parameters determined from
training data, the probability function producing a probabil-
ity that a given set of speech data is representative of that
particular state, the recognized known labels comprising
words in the recognition database.

12. The method according to claim 11 wherein the prob-
ability functions are stored in the system as a mixture of
simple probability functions.

13. The method according to claim 12 wherein the simple
probability functions are discrete pre-computed probability
values retrieved by a table look-up.

14. The system according to claim 12 wherein the simple
probability functions are Gaussians.

15. The method according to claim 14 wherein the
speaker independent probability functions are mixtures of
Gaussians having the form:

psi(vls) = D plerlsON (3 pigs Zig)

16. The method according to claim 10 wherein each of
said stored statistical models is associated with a subunit of
speech.

17. The method according to claim 10 wherein said
recognition performing step is vector quantized subvector
recognition using discreet HMMs having the form:

32
P(X) = Z Ai Pg(VQy = k1) Pa(VQ, =ka)-
=)

P(VQy = k3) - Py(VQy = k) - Pu(VQy = ky)

where P (X)) is the probability for a particular model state
s that X, was produced by that state, &, is the weight of
the i-th mixture component, k; is the codebook index
observed at time t for the first subvector, and

P.(VQ;=k,) is the probability that the fist subvector index

is k;, derived from a table lookup for this model state
and mixture component i.

18. A method for developing models in a recognition
system for responding to data representative of captured
physical speech, comprising the steps of:

selecting a multi-state model with state probability

functions, said state probability functions being of a
general form with initially undetermined parameters,
said models divided into subvector models for recog-
nizing subparts of observation vectors;

creating individual instances of a model for each subunit

of speech to be processed;

using training data from a plurality of speakers to deter-

mine acoustic features of states of said models and to
estimate probability density functions for said models;
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clustering states based on their acoustic similarity;

creating a plurality of cluster codebooks, said cluster
codebooks consisting of probability density functions
that are shared by each cluster’s states; and

reestimating the probability densities of each cluster code-
book and the parameters of the probability equations in
each cluster.

19. A method for developing models in a recognition
system for responding to data representative of captured
physical speech, comprising the steps of:

selecting a multi-state model with state probability

functions, said state probability functions being of a
general form with initially undetermined parameters,
said models divided into subvector models for recog-
nizing subparts of observation vectors, wherein said
observation computation is based on performing an
iteration of a forward-backward algorithm on the train-
ing speech data and is of the following form for every
state s and mixture component 1 and at every time t:

A Pg(VQy =k1)-Pg(VQr = ky)-

o) = OB PulVO: =ha): PalVQs = k) PulVQu = k)
r’ DACRY:ACH] 32
s Zl/\j'ij(VQl =k)-Pyi(VQy =kp)-
2

Py(VQ3 = k3) Pj(VQa = ka)- Pyi(VQn = kn)

where the quantities o.(s),f(s) are the alpha and beta
probabilities that are computed with the forward-
backward algorithm, and the probabilities of the
subvectors are computed using the previous esti-
mates of the model parameters;

thereafter computing new estimates for the subvector
probabilities using the following formula:

2

Times ¢ where

Yels, D)

index of first
subvector is k7

2 s i)

Times ¢

Pg(VQy =k;) =

thereafter updating similarly the probabilities of all the

subvectors for all states s and mixtures i; thercafter

replacing previous values of said subvector prob-
abilities with new estimates until a predefined
convergence criterion is not met, thereafter

creating individual instances of a model for each
subunit of speech to be processed;

using training data from a plurality of speakers to
determine acoustic features of states of said mod-
els and to estimate probability density functions
for said models;

clustering states based on their acoustic similarity;

creating a plurality of cluster codebooks said cluster
codebooks consisting of probability density func-
tions that are shared by each clusters states; and

reestimating the probability densities of each cluster
codebook and the parameters of the probability
equations in each cluster.



