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ABSTRACT
In response to user queries, commercial web search engines,
such as Yahoo!, Google, or Bing, show organic (e.g., web)
results on their portals or other publisher sites. Most of
their revenue originates from showing ads along with these
results, by letting advertisers bid on possible user keywords.
Long-term success depends on delivering and appropriately
balancing utility for all of these three groups of participants.

We present some formalizations of utility functions that
go beyond instantaneous revenue and include the cost of
compromising user experience. We make some simplifying
assumptions to implement algorithms for ranking (ordering
of ads), filtering (exclusion of less relevant ads), and page
placement (deciding how many ads to show on top of the
organic results). While utility functions have been proposed
in the literature before (e.g. [6]), it was typically applied
only to ranking; to the best of our knowledge, the problem
of filtering and page placement in web search advertising has
not been addressed in depth in the current literature.

Finally, we report experimental results on random live
traffic from a commercial search engine, which exhibit sig-
nificant improvements in behavioral metrics.

1. INTRODUCTION
The prevalent auction model in current web search adver-

tising is based on the generalized second price (GSP) princi-
ple [5, 17]. Advertisers bid on search terms relevant to their
products. They have a chance to get shown on the search
engine result page (SERP) when users type in these queries,
along with competing ads and organic (web) results1. The
ads are ordered according to a function rankScore of bid and
a proprietary ad quality score. A typical implementation is
to use a position-normalized estimate of click-through-rate
as quality score, and define the rank score as the product
of this and the bid. When the user clicks on an ad, the ad-

1For simplicity, in this paper we ignore other types of links
like vertical search results, shortcuts, spelling suggestions
etc.
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vertiser has to pay the minimum bid necessary to retain his
rank according to this ordering [12].

While this auction process is geared towards maximizing
the search engine’s expected instantaneous revenue, its long
term success also hinges on its utility for all three groups of
participants:

Users visiting the search engine for quick navigation, to
find information, or perform transactions.

Publishers are web sites displaying the search results. In
addition to the search engine portal itself, third par-
ties can generally enter a revenue-sharing agreement
to show the results on their site.

Advertisers try to maximize their return on investment
by obtaining a large volume of clicks with lower price
than their expected value of conversion.

Some generalized utility frameworks have been proposed
earlier [6, 1]. The challenge lies in translating such mod-
els into practically feasible adaptations to our current web
search advertising system. These changes affect a variety of
functions that we summarize under the name Search Adver-
tising Optimization:

Ranking orders the ads according to a score of estimated
utility.

Pricing determines the cost advertiser have to pay for a
click.

Filtering decides which ads out of all candidates are eligi-
ble to be shown for a given query.

Page Placement determines where to show ads on the
SERP: above (a.k.a., “North” of) the organic results,
in a separate column to the right (“East”), or below
them (“South”); see Fig. 1.

Out of these functions, most existing literature concen-
trates on ranking alone. However, it is well known (e.g.,
from eye-tracking studies [9, 4]) that the real estate at the
top of the SERP is much more valuable than the rest of
the page due to highly selective user attention. Even if
we have given a set of ranked ads, we still have to decide
whether they deserve to be placed on top of the web re-
sults, or rather should be placed in the less prominent space
on the right. The stakes are high, since ads receive signif-
icantly more clicks in the North; however, on the flip side,
showing an irrelevant result here can hurt user experience
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Figure 1: Search Result Page with Ad Placement
Regions.

much more severely and might subsequently prevent him
from clicking on other ads or from returning to the search
engine altogether. To the best of our knowledge, we could
not find any publications addressing this problem explicitly
and we hope to initiate this discussion here.

The overarching goal of this paper is to explore solutions
to all sponsored search optimization problems that balance
search engine revenue and user experience in a meaningful
way. In the next section, we start by briefly reviewing utility
from the viewpoints of advertisers, publishers, and users, in
turn. Sec. 3 particularly focuses on incorporating user util-
ity. For ranking and filtering, we cover the necessary posi-
tion normalization (Sec. 3.1), and then build on Abrams and
Schwarz’ [1] Hidden Cost Model (Sec. 3.2). Sec. 4 formalizes
the problem of page placement as a constraint optimization
problem. While the exposition up to this point is still general
enough to accommodate various concrete methods of esti-
mating utility, we subsequently concentrate on some special
cases that are however amenable to implementation within a
current commercial search engine. Based on the widely used
DCG relevance metrics [13], we define the North Ad Impact
criterion (Sec. 4.2 and 4.3). We also develop a new scheme
of separate, cascading auctions for different SERP regions
(Sec. 5) that can be used to adapt both ranking and page
placement. Finally, in Sec. 6, we summarize various live traf-
fic experiments, and report behavioral metrics results that
show significant improvements.

2. UTILITY FUNCTION
Let us briefly review the utilities of the different partici-

pants in search advertising.

2.1 Advertiser Utility
Advertisers try to maximize the number and values of

conversions (e.g., purchases). The relative conversion fre-
quency, times the value per conversion, should exceed the
price per click (PPC ) to be profitable. There is usually a

complex and only partially known relationship between the
volume of clicks and the bid – higher bids can secure more
prominent placement, but will tend to increase cost depen-
dent on competing ads. Also, the composition of queries
and search traffic has a significant effect on conversion rate;
the user populations visiting different publisher sites can
have different characteristics. The actual value per click es-
timated by advertisers is not directly accessible to the search
engine; however, under the assumption of informed adver-
tisers in a symmetric Nash equilibrium, bounds can be de-
rived based on the ranking; moreover, ranking by bid times
position-normalized click-through rate guarantees maximiza-
tion of advertiser value [17].

2.2 Publisher Utility
Ultimately, publisher revenue is a share of the total con-

version value. There are two ways to raise it: by taking
share away from advertisers (e.g., through modifications of
the rankScore function), or by striving to create more value
for advertisers, and then indirectly profiting. Surely the
latter option is the more sustainable one in the long term.
Methods can be employed to increase CTR (with no con-
version rate change, i.e., excluding ’accidental clicks’), to
increase conversion rate (e.g., by better ad targeting to user
searches), or both. Since we can safely assume that convert-
ing users are satisfied, increasing the conversion rate is good
for all three groups.

2.3 User Utility
We have seen that (under some assumptions) giving most

of the clicks to the advertisers with highest ranking score
improves their utility (and that of the publisher). However,
most users visit the search engine primarily for organic re-
sults, so a natural conflict in short term utility arises. In the
long term, bad ads that tarnish overall user experience and
keep them from coming back are detrimental to the search
engine as well. We will focus on user utility in the remainder
of the paper.

The ultimate measure of user utility is task completion:
he finds the information or web address he was looking for,
or a site to execute an intended transaction. It can only
be credited to the entirety of the user’s goal-related actions,
generally not to an individual search result. Without explicit
feedback, task completion is hard to recognize. Nevertheless,
a number of implicit measures have been developed that
correlate to some degree, e.g., click-through rate, landing
page dwell time, scrolling actions, conversions, etc [7, 14].

For these reasons, all frameworks have to make strong sim-
plifications in their user models. Some common assumptions
are:

• The user’s task-related activity consists of a single
search.

• There is at most one click per SERP, and it determines
success.

• Results are examined independently of each other.

• The utility of the result list can be decomposed into a
sum of individual result utilities.

Suppose that each search result can be clicked; subse-
quently, the user examines the landing page, which may or



may not be relevant. Conditional on these mutually exclu-
sive cases of user behavior (not seen, not clicked, relevant
landing page), we can define the expected user value of an
ad as

Uuser = (1− p(click)) ·Udistr +

p(click) · [p(rel) · Urel + (1− p(rel)) · Uirrel] .

• Urel is the utility of finding a relevant result - obtaining
desired information, navigating to an intended site, or
being able to perform a transaction such as a purchase.

• Uirrel is the (negative) utility of the user recognizing
that a clicked page does not meet his expectations -
the click was essentially wasted.

• Udistr is the (slightly less negative) utility due to visual
distraction and annoyance, e.g. through lowering the
probability of noticing other, more relevant results.

The parameters Udistr, Urel, and Uirrel have orthogonal
definitions and can be estimated independently. They could
be refined as a function of the ad, position, session, etc: Urel

may be higher for more expensive markets; Uirrel could be
made low for an informational session, and high for com-
mercial sessions; Udistr may decrease with rank, and can be
a function of the estimated relevance of the shown abstract
to the query.

We can define the total value of an ad as the sum of the
declared advertiser value, and the estimated user value:

Utotal = p(click) · bid + p(click) · p(rel) · Urel +

p(click) · (1− p(rel)) · Uirrel +

(1− p(click)) ·Udistr ,

which is equivalent to

Utotal = p(click) [bid + p(rel)(Urel − Uirrel)+

(Uirrel − Udistr)] + Udistr. (1)

3. INCORPORATING USER UTILITY FOR
RANKING AND FILTERING

3.1 Position Normalization
In an auction for a single display slot, we could use a

direct estimate according to Eq. 1 and let the result win
which has the highest such score. However, this is not di-
rectly applicable to the multi-slot case; placing the same ad
in a more prominent spot of the SERP will garner more
clicks, everything else being equal. We need a position-
normalized score S so that for all ads a, a′ and positions
i, Utotal,i(a) > Utotal,i(a

′) whenever S(a) > S(a′). It is con-
venient to assume that the positional effect can be factored
both for the click probability and for Udistr in the same way:

p(click |position, ad , . . . ) = f(ad , . . .) · g(position)

Udistr = h(ad , . . .) · g(position).

One interpretation is that g is the probability of the user
noticing the ad altogether while scanning the page; this
probability is assumed to decrease with rank, independently
of the actual ads.

Under this assumption, it is feasible to use a ranking score
that is similar to Eq. 1, except that the position-independent

estimates p(click |seen) and Udistr|seen = Udistr/p(seen) re-
place p(click) and Udistr, respectively. Engel and Chickering
[6] describe a similar framework.

Ranking based on this score results in maximizing the sum
of all expected result values. Filtering arises as a natural
consequence: It is better not to show a result with negative
expected value at all.

It should be mentioned that recently there has been a
flurry of research to overcome the limitations of the pure
rank-based position normalization, and to incorporate ex-
ternalities between ads (e.g., [10, 2, 15, 3]).

3.2 Hidden Cost Auction Model
Abrams and Schwarz [1] proposed a generalization of the

GSP auction mechanism that is able to incorporate a Hid-
den Cost. This term models the time-discounted future loss
of revenue that results from a user looking at an irrelevant,
clicked result: a bad experience can make the user less in-
clined to click on ads in the future. Hence, when ranking
ads according to estimated revenue, this future externality
should be incorporated by subtracting it from the short-term
declared value. In principle, with a vast amount of historical
data, a large number of users, and long lifetimes of ads, it
would be possible to precisely determine this cost, by com-
paring average click-through rates of users before and after
having seen a given ad. While such an undertaking is in-
feasible in practice, because of various issue like infrequent
queries and inventory turnover, the framework is still useful
to incorporate any estimate of user utility into the second-
price auction process.

Recall that ads are ranked by the product of bid and qual-
ity score, rankScore = bid · q, where q can typically be un-
derstood as a position-normalized estimate of click-through-
rate. Then, the rationale for pricing is to charge the adver-
tiser the minimum bid that would be necessary to maintain
his rank (plus a small minimum increment). Ignoring the
latter, for all but the last-ranked advertisers i this results in

cost i =
rankScorei+1

qi
=

bid i+1 · qi+1

qi
.

Now, in the generalized framework we subtract the hidden
cost hc from the declared value, and rank by the net value

rankScore ′ = bid ′ · q = (bid − hc) · q.

To maintain his rank, the advertiser at rank i then has to
pay a price per click

cost i =
rankScorei+1

qi+1
+ hci;

i.e., advertisers are allowed to compete only based on the
net bids (actual bid minus hidden cost), and are additionally
charged the hidden cost for clicks.

Comparing with Eq. 1, we can equate the hidden cost with
the negative expected value of the landing page:

hc = p(rel)(Uirrel − Urel) + Udistr − Uirrel. (2)

The comparison also shows that the hidden cost is associ-
ated with a cost per click based on the landing page. If q is
interpreted as a click-through rate, then rankScore would be
measured in monetary units per impression; and so would



be the additional term in Eq. 1 for SERP annoyance, which
is intuitively plausible: the lower the click-through rate, the
higher the cost that will be charged for each click.

Although Abrams and Schwarz [1] were mostly concerned
with the negative user experience after clicking on an irrel-
evant ad, it is straightforward to accommodate the hidden
cost per-impression:

cost i =
rankScorei+1 + hcimp,i

qi+1
+ hcclick,i,

with hcclick,i defined as before, and an additional term
hcimp,i = −Udistr.

4. INCORPORATING USER UTILITY FOR
PAGE PLACEMENT

Advertisements on top of organic results (rather than in
a separate, right-hand column) directly compete with the
latter ones for space. For some commercial search terms,
ads can be more attractive than web results, but more fre-
quently, they can divert attention and keep users from reach-
ing pages with the requested information. Real-world search
engines deliberately risk degradation of user experience in
exchange for expected revenue.

Usually, ads and web results cannot be freely mixed, only
in North, East, and South Blocks. Ads not shown in the
North can still be shown in the East or in the South; how-
ever, the bulk of both user impact and revenue stems from
the North. Therefore, subsequently we focus on North place-
ment.

Deciding ad placement is a task of integrating two com-
pletely separate search engines. In principle, we could find
appropriate parameters for Eq. 1 (higher relevance proba-
bilities and utilities for web results should compensate for
the lack of revenue) and then optimize this score for each
search. Out of a set of possible slates of ad and web re-
sults (e.g., showing 0, 1, . . . North ads), we could choose
the one that maximizes the total expected utility. However,
these parameters are hard to estimate accurately. Just rely-
ing on the utility estimate for page placement would make
it hard to influence parameters like e.g. the total number of
ads shown directly. Therefore, real-world search engines try
to get more fine-grained control over the trade-off between
revenue and user utility.

4.1 Page Placement Algorithm
Typically, a target of estimated user utility reduction can

be fixed, and then an ad allocation algorithm can be tuned
to optimize estimated revenue. In contrast to maximizing
a utility function separately for each query, we pose page
placement as a constrained optimization problem of maxi-
mizing overall revenue, given an overall budget of maximum
user utility reduction, across all searches.

First, suppose we can run an offline simulation based on
a sample of N historical user searches from server logs, to-
gether with the corresponding ranked lists of web and ad
results. For ease of exposition, equate user utility with (neg-
ative) average number of ads per page, nad (also called the
North Footprint, NFP); so we can allocate nad ·N total ads
across the given searches. If we could place any available
ad, a simple greedy algorithm would find the maximum ex-
pected revenue by choosing the top nad · N ads in order of
decreasing estimated revenue (more precisely, p(click) · bid).

Of course, in reality there are constraints to be observed:

• Ad placement has to be consistent with ranking.

• An ad at rank i can only be placed if i = 1, or ad
(i− 1) has been allocated already.

• There is a maximum number of ads that can be shown
on a given page.

The greedy algorithm can be refined to take care of these
dependencies by using a lookup table mapping each search
to the next eligible ad. If the ranking score is different from
the page placement objective, this strategy is not guaranteed
to find the optimal result any more, but in practice we have
seen acceptable performance.

In contrast to the offline scenario, the server has to make
the page placement decision instantly at the time of a new
user request. Note that the placement would have been the
same as if it had been done online by the server executing
the following algorithm: allocate each placeable ad whose
expected revenue is at least as large as that of the (nad ·N)-
th top ad.

Now, as a generalization, suppose we want to maximize
revenue under a constraint of an arbitrary utility function,
not only the total number of ads as assumed above. The
offline optimization problem turns out to be at least as com-
plex as the NP-hard 0-1-knapsack problem [8] (it is a proper
instance if we again drop the ranked allocation constraints):

0-1-Knapsack Problem:
Maximize

∑n
j=1 pj xj

subject to
∑n

j=1 wj xj ≤W, xj ∈ {0, 1},

where the weights wi correspond to user utility, W to the
total budget, and the pi to estimated revenues.

Despite its intractability, many practical instances of this
problem can be solved using dynamic programming over the
space of all searches and ad impressions. However, we are
not only interested in offline optimization, but also in a real-
time version of it2. Therefore, we have to stick to a greedy
approximation. One possible heuristic is to order the items
by either pi, pi − α ∗ wi, or pi/wi (in our case, expected
revenue over expected user utility), and then allocate eligible
ads until the utility budget is exhausted.

4.2 DCG and North Ad Impact
Up to now, we have outlined a formal framework for incor-

porating user utility into Search Advertising Optimization.
However, we have not given details about how to accurately
determine the involved parameters, Urel, Uirrel, and Udistr.
In general, this is a complex problem in itself, and a conclu-
sive treatment is beyond the scope of this paper. It could
be based on psychological models of user perception; alter-
natively, we could develop economical prediction models by
trying to quantify the impact of seen ads on future revenue
from the user. We are planning to investigate such effects
in subsequent work. However, for the time being, we resort
to some simple but more easily measurable proxies. The
remainder of the paper describes three such specializations
that lend themselves more readily to live traffic experiments.

2The serve-time algorithm can only examine the ads selected
for the particular search, whereas the offline dynamic pro-
gram depends on all ads served over a period of time.



One way of measuring the web search retrieval quality
that has become somewhat of an industry standard is the
Discounted Cumulative Gain (DCG) [13]. It is a weighted
sum of the per-item relevance scores (according to human
judges) of the top p returned documents, where the weight
is a decreasing function of the rank:

DCGp =

p∑
i=1

wi · rel i. (3)

This formula is commonly used with a non-linear relevance
scale that attempts to capture user satisfaction. The rea-
soning behind the weights is that according to behavioral
studies, users spend a limited amount of effort on scanning
the SERP, with most of their attention focused on a top
left triangle. A popular choice for the position weight is
wi = 1/ log2(1 + i).

We can view DCG as a special case of Eq. 1 as follows: the
position weights wi correspond to p(click) ∼ const×p(seen),
i.e., the user clicks blindly on results with a probability
decreasing with the rank. The relevance score rel i is an
aggregate estimate of the expected total post-click value,
(p(rel) · Urel + (1− p(rel) · Uirrel), and Udistr = 0.

For a given SERP consisting of ads and organic results,
we can use this measure to determine relevance degradation.
North Ad Impact (NAI) is defined as the difference in DCGp

for the whole page (including top ads), and for the same
page with the ads removed. A positive NAI corresponds to
a decrease of relevance, while a negative NAI means that
the ads are in fact more relevant.

4.3 Using NAI for Page Placement
Let us define the incremental NAI of the ad at rank k as

the difference of the DCGp of the SERP with ads 1, . . . , k − 1
shown, minus that of the same page with ads 1, . . . , k:

NAI k =
∑

i=1..p−k

(wk+i−1 − wk+i) · relweb,i +

wp · relweb,p−k − wk · relad,k (4)

That is, all web results get pushed down one rank (and
thus suffer a loss in DCG weight) except for the last one at
rank p, which gets eliminated.

Editorial data is sparse and expensive, so we have to use
approximations and predictions for web and ad relevance.
We can cheaply make a zero-th order approximation towards
constraining North Ad Impact without even having individ-
ual relevance judgments as follows. We modify the basic
algorithm described in Sec. 4.1 to constrain, rather than the
average number of North ads per search, a weighted average,
with the weights taken from the DCG formula (3). This is
equivalent of assuming the same (lower) relevance for all ads
on the one hand and for all web results on the other hand,
and then inserting these averages into Eq. 4. Under these
simplifying assumptions, our tuning target would indeed be
the North ad impact.

Earlier live traffic experiments showed us that this modi-
fied page placement algorithm increased revenue and North
footprint; however, an evaluation by human editors con-
firmed a neutral NAI. The distribution of the number of
North ads changes, reducing the number of searches with
only one or two ads shown in the North, and increasing the
percentage of searches with the maximum possible number

(four). User experience is less impacted by showing four
instead of three ads, as opposed to showing one ad where
previously none was shown. A large fraction of overall NAI
was caused by searches with a single ad in the North - often
due to lack of competitors and ensuing unrealistically high
bid for infrequent search terms. The Weighted North Foot-
print criterion tends to discourage these cases due to higher
first-rank weight.

Beyond wNFP, the next more precise approximation to
NAI is by way of a relevance model trained to predict edito-
rial rating. Typically, web ranking already employs a rel-
evance model that is trained to predict editorial ratings,
based on features like query word occurrences, link struc-
ture etc. If we build a similar model to predict ad relevance
on the same target scale, we can use both types of scores for
NAI prediction at serve time. Note however, that ad rele-
vance prediction is a more challenging task due to shorter
document length and the limited availability of hyperlinks.

We can use the incremental NAI estimate by ranking ads
for page placement not only by estimated revenue, but by a
North Ad Placement (NAP) score that is discounted by the
NAI.

5. MULTIPLE CASCADING AUCTIONS
As explained in Sec. 3, practical implementations of rank-

ing and filtering in the second-price auction require the score
function to depend on display position only in a very sim-
ple, multiplicative way. One way to achieve such flexibility
is to have multiple auctions using potentially different util-
ity functions. In the same way as advertisers prefer higher
ranks on the page, a similar preferential ordering can exist
for entire regions of the page (e.g., North placement is gen-
erally more desirable than East placement, regardless of the
precise rank). In this case, we can auction off the most de-
sirable region first, then run an auction for the next highest
value for those advertisers that did not win a placement in
the first round, and so on.

The algorithm for the case of two (North and East) regions
is given in Fig 2. Note that

• Filtering in step 1(d) does not permanently remove
the candidates, they can still participate in the East
auction.

• The cost of the last North ad may not depend on the
top East ad.

• The scheme could be generalized for an arbitrary par-
tition of ordered regions; in the extreme case, we could
have a separate auction for each single slot.

• In a particular implementation, any of the steps can
be trivial (e.g., we currently have no East page place-
ment; the ranking and page placement score could be
identical).

The most drastic change is the ability to ’skip’ to the
North, bypassing other ads in the East that might have
a higher ranking rankScore, but are not deemed relevant
enough. Therefore it can alleviate the “coat tail effect” of
the page placement algorithm (Sec. 4.1) that occurs in case
of disparity of ranking and NAP score.

One interesting special case of the dual-auction scheme is
to use it only to restrict the set of North candidates, but



1. North Auction:

(a) Rank all candidate ads according to the North ranking
score.

(b) Compute NAP scores for the ordered list (using the
same or a different function as ranking).

(c) Filtering: Remove ads with negative NAP score.

(d) Compute the costs as in GSP.

(e) Remember only the winning North ads (if any).

2. East Auction:

(a) All ads that did not get allocated in the North form
the set of East candidates.

(b) Rank all East candidates according to the East rank-
ing score.

(c) Filter ads with negative score.

(d) Compute the costs as in GSP.

3. Merge the ranked North and East ads to form the final
ranking.

Figure 2: Algorithm for separate North/East auc-
tions.

otherwise not change the ranking and page placement from
the single-auction case. This could be formalized by adding
a term to the score that is −∞ for an ad in a North auction
that does not meet a given relevance estimate threshold, and
zero otherwise.

As an example, consider the following ads in a conven-
tional page placement scheme, where the page placement
threshold is 0.9, and the minimum price per click is 0.05:

ad ID rank bid q rankScore cost place
1 1 2.0 0.5 1 1.50 north
2 2 0.5 1.5 0.75 0.17 east
3 3 0.5 1 0.5 0.05 east

Now, imagine a dual auction scheme which requires a min-
imum q of 1 to be shown in the North (we want to reserve
this space for frequently clicked ads; we will refer to it as
dual-coec in the following section). So only ads 2 and 3 are
North-eligible, and participate in the North auction. How-
ever, with the same threshold of 0.9, still both would not
qualify, and all three ads would end up in the East, in the
same order. Often times, we would like to keep the overall
north footprint fixed, despite the changed auction mecha-
nism. To this end, suppose that based on the overall distri-
bution, the north threshold is adjusted accordingly to, say,
0.6. Then, the resulting page would look as follows:

ad ID rank bid q rankScore cost place
2 1 0.5 1.5 0.75 0.05 north
1 2 2.0 0.5 1 1.00 east
3 3 0.5 1 0.5 0.05 east

In essence, we have traded higher click through rates in
the North for lower prices per click.

The proposed scheme is analogous to the concept of risk
aversion from social sciences, which is commonly modeled
as a non-linear utility function. In our domain, it is reason-
able to assume a similar non-linear dependence with regard
to user experience as a function of a relevance score: Ads
that are only moderately relevant to the user’s intent may
result in some inconvenience, but a single result that is an

egregious mismatch can capture his attention and have a
lasting impact on his opinion of the search engine.

6. EXPERIMENTAL RESULTS
In this section, we summarize a number of experiments

we ran on a random sample of live US search traffic of a
commercial search engine. Each experiment was conducted
over a period of one week. To ensure consistent experience,
users were assigned to an experiment randomly but fixed
based on a hash of their browser cookies. On average, about
one million searches per day were issued by 250,000 users.

The resulting metrics are compared to a baseline experi-
ment of equal volume that was run simultaneously. Position
normalization of click-through rates is based on the simple
yet easily computable model of COEC (clicks over expected
clicks, see e.g. [18] for details): position bias is captured in
terms of a reference CTR, i.e., the mean click-through rate
at a given display position on the page (averaging over all
ads shown there); the ad-specific term is computed by di-
viding the ad’s observed clicks by the expected clicks accord-
ing to the reference CTR for the position(s) it was shown
at. COEC is our implementation of the above-mentioned
quality score, q. To cope with sparsity of historical data, a
predictive click model [16] was used.

The baseline experiment ranks ads by the product of bid
and predicted COEC. By further multiplying this score with
the reference CTR for a given rank, we arrive at a proxy
for estimated revenue; this is used as the NAP score in the
page placement algorithm of Sec. 4.1, with the user utility
budget fixed in terms of average weighted north footprint,
as described.

Overall, we ran three threads of experiments; all the indi-
vidual tests are described in Figure 3. In the first thread, we
let the NAP score be a weighted sum of the revenue estimate
and a utility discount based on a prediction of incremental
North Ad Impact according to Eq. 4, using the top 5 results.

We trained an ad relevance model based on n-gram over-
lap features between the query and the ad text, and on his-
torical click rates to predict editorial ratings; Hillard et al
[11] describe details. A separate, independent model is used
to score and rank web results, in the same way as produc-
tion web search [19]. Because of engineering requirements,
we cached the scores of the top 5 results on the 10 million
most frequent queries; for tail queries, we defaulted to aver-
age values.

The second thread consisted of experiments with separate
North and East auctions, as proposed in Sec. 5. We used dif-
ferent combinations of the COEC and relevance predictions
to filter the candidates to be placed in the North.

The third thread used a utility based discount to modify
ranking; if the sum of estimated revenue and discount turned
negative, the ad was filtered. This is in accordance with the
Hidden Cost Model from Sec. 3.2.

To make these experiments comparable to the baseline, in
all cases (with the exception of dual-coec-rel-rev) we applied
page placement thresholds such as to preserve the overall
Weighted North Footprint.

Figure 4 gives a summary of the results. All numbers
are percentage differences with respect to the baseline ex-
periment. The metrics are defined as follows. When a user
issues a query, the search engine responds with a result page.
This event is called a page view. RPS (revenue per search)
– total revenue over total page views; CTR – total num-



Experiment CTR CY PPC RPS Cov Dep NCTR Ncov NFP wNFP
95% confidence interval ± 0.4 ± 0.6 ± 1.0 ± 1.3 ± 0.3 ± 0.3 ± 0.5 ± 0.3 ± 0.3 ± 0.3

nai-disc 0.6 0.9 – – – – 0.7 – 0.6 0.5
dual-coec 1.4 1.3 -3.6 -2.4 – 0.6 3.6 -1.4 0.7 –

dual-coec-hist – – -6.0 -6.1 – – – -1.2 1.5 0.6
dual-hist – – -1.8 -2.2 – – -1.4 – 1.6 1.0
dual-rel 1.8 1.8 -3.3 -1.6 – – 4.1 -1.4 0.7 –

dual-coec-rel-rev 7.0 6.8 -9.5 -3.4 – – 5.7 4.9 16.4 13.4
hc-coec 12.7 – -2.3 -1.9 -10.9 -7.6 -1.4 2.8 – 0.6

hc-coec-rel 11.7 – -4.4 -4.1 -10.2 -4.1 – 2.0 -0.8 –

Figure 4: Summary of Utility Experiments (all numbers represent relative differences to the control experi-
ment, in percent). For clarity, non-significant results are indicated as ’–’.

nai-disc: Set the NAP score to a weighted average of estimated
revenue and predicted North Ad Impact.

dual-coec: Separate North/East Auctions. Only ads whose
COEC exceeded a certain threshold were allowed to be
shown in the North.

dual-hist: Separate North/East Auctions. Only ads that had
any historical click data recorded were allowed in the North.
The rationale is to use the availability of history as a proxy
for confidence in our COEC prediction.

dual-coec-hist: Separate North/East Auctions. This experi-
ment combines the previous two: the condition for North
ads is that the ad has a minimum COEC and historical
information.

dual-rel: Separate North/East Auctions. North ads were re-
quired to pass at least one of a threshold on COEC and
the estimated editorial relevance.

dual-coec-rel-rev: Separate North/East Auctions. To be eligi-
ble for North placement, an ad has to pass at least one of
three thresholds: on COEC, on relevance score, or on es-
timated revenue. Different from other experiments, any
placeable ad that fulfills this condition is automatically
shown, without subsequent page placement procedure.

hc-coec: Page placement identical to baseline. Pric-
ing/Ranking/Filtering applies a Hidden Cost Discount
(Sec. 3.2) of the form param/COEC .

hc-coec-rel: Same as hc-coec, but the discount is based on a
weighted average between the relevance score and COEC,
where the weight depends on the amount of historical data.

Figure 3: Description of live traffic experiments.

ber of clicks over total number of page views with ads; CY
(click yield) – total clicks over total page views; PPC – av-
erage price per click; NCTR (north CTR) – CTR of all page
views with North ads; Ncov (north coverage) – ratio of page
views that have North ads; NFP – average number of North
ads per page view; wNFP – average DCG-weighted NFP.

In general, we can interpret click yield as a measure of
user engagement. If we can maintain RPS, but increase
clicks while dropping PPC, advertiser ROI will increase on
average, assuming constant conversion rates. Note that a
change in price per click does not affect all advertiser equally
in the general case; rather, different ranking or placement
results in users clicking more on some ads but less on others,
whose prices may be different.

For all experiments except dual-coec-rel-rev, we retuned

the page placement threshold such that the NFP was roughly
neutral compared to the baseline. What we want to achieve
is to allocate the same ad footprint more efficiently by shift-
ing it from one query to another one.

The NAI-based experiment shows a slight improvements
in terms of the click and revenue metrics.

In line with expectations, all of the dual-auction variants
(but dual-hist) lead to increased (North) CTR and lower
RPS due to price drops. Similar to the NAI-based experi-
ments, the NAP distribution changes towards lower North
coverage and higher North depth. COEC -based filtering in-
creases click yield reasonably, but the relevance-model (dual-
rel) achieves similar click metrics with less revenue loss.

The idea of dual-coec-hist was to strengthen the criterion
of dual-coec by additionally requiring a confidence in the
COEC estimate, expressed as the availability of historical
information. Note that in particular this will exclude newly
created ads. Contrary to our expectation, this led to a degra-
dation in both click and revenue metrics. The negative ef-
fect is even more pronounced in the case that we use history
alone (dual-hist). Maybe we can interpret this result in the
way that some ads have a high CTR, despite being shown
infrequently or being new, and that the click model gives us
a decent estimate for them.

The combination of the relevance, COEC, and revenue cri-
teria (dual-coec-rel-rev) is the most disruptive experiment.
Ads have to pass at least one of three thresholds on COEC,
predicted relevance, or COEC times bid in order to be shown
in the north; in contrast to the previous experiments, once
these thresholds are passed, no further page placement con-
ditions based on expected revenue are imposed. Another
difference is that we allowed the north footprint to increase,
in order to absorb some of the revenue drop. The rationale
was that most of the ads were selected based on relevance
or high CTR, so despite the increase the user impact should
be lower. The CTR and click yield increase are highest for
this experiment, and the simultaneous price drop should im-
prove advertiser experience by providing them more clicks
at a lower cost. We also conducted a manual evaluation by
human raters for this test, which showed a 24% drop in NAI.

While all the experiments mentioned so far do not change
the total number of ads shown (coverage and depth), the
Hidden Cost experiments affect mostly those metrics due to
more rigorous filtering for negative total scores. The dis-
count in ranking tends to decrease the ranking score and
consequently the cost for the next higher ad; this leads to
the observed PPC and RPS drop. Despite much lower cov-
erage and depth, there is no loss in total clicks. The vari-
ant based on pure CTR estimate, hc-coec, shows less of a



price drop than the one incorporating the relevance model
score, hc-coec-rel ; however, the click metrics are very simi-
lar. In summary, the Hidden Cost experiments show that it
is possible to reduce the number of shown ads greatly while
maintaining the overall click volume.

7. CONCLUSION AND FUTURE WORK
In this paper, we developed formalisms to describe general

utility functions for web search advertising systems beyond
instantaneous revenue, e.g., by taking into account user sat-
isfaction. We defined and outlined problems in sponsored
search optimization such as page placement and filtering
that, to the best of our knowledge, have only received limited
attention in the current literature. Our overarching goal is
to solve these problems in a way that balances search engine
revenue and user experience in a meaningful way.

We acknowledge that there is still a gap between general
utility formalisms and practically feasible implementations
in commercial search engines. The reasons are diverse - ac-
tual human behavior is very varied and complex, but we
need to simplify user models in order to obtain tractable
results; and even for these simplified models, it is hard to
estimate hidden parameters (such as Udistr, Urel, and Uirrel)
in a reliable and accurate way. Estimation could be based
on psychological models of user perception; alternatively,
we could develop economical prediction models by trying to
quantify the impact of seen ads on future revenue from the
user. These are beyond the scope of this paper, but we will
address it in future work. Clearly we have only scratched
the surface, but hope to have opened the discussion.

Instead, in this paper, we focused on some special cases of
utility that are amenable to current implementation. Based
on the widely used DCG relevance metrics [13], we defined
the North Ad Impact criterion. We estimate this online us-
ing machine-learned web and ad relevance models. We pro-
posed and implemented three different ways of using rele-
vance information: combining it with the revenue estimates
in the page placement score; ranking and filtering according
to the Hidden Cost model; and breaking up the auction into
more or less prominent page regions, and use relevance as an
ad eligibility criterion for the former one. We tested these
models on live traffic from a commercial search engine. The
resulting behavioral metrics show significant improvements,
as e.g. measured in terms of total received clicks.
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